POSTER PRESENTATION

Open Access

Development of Efavirenz nanoparticle for enhanced efficiency of anti-retroviral therapy against HIV and AIDS

BN Vedha Hari^{1*}, K Dhevendaran¹, N Narayanan²

From First International Science Symposium on HIV and Infectious Diseases (HIV SCIENCE 2012) Chennai, India. 20-22 January 2012

Background

The FDA approved drug Efavirenz is a Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) successful first line drug of choice in Highly Active Anti-Retroviral Therapy (HAART) for treatment of HIV and AIDS. It is poorly water soluble drug (10 g/ml) with 40-45% of bioavailability and administered as high doses 600-800 mg/day. Increase in solubility can enhance bioavailability; providing reduction of dose, resistance and harmful side effects.

Methods

Efavirenz nanoparticles are developed using methacrylate polymers (Eudragit E100) by emulsion solvent evaporation method (1:0.5, 1:1, 1:2 and 2:1 ratios) and the in-vitro evaluations such as particle size, morphology, solubility changes, drug release, compatibility and cytotoxicity tests are carried out.

Results

The particle size of 99-200 nm with narrow size distribution and surface charge (-52 V) shows high stability. The formulation with entrapment efficiency (75-90%) shows higher drug release profile 95-100% within 1 hour compared to 23%-58% of pure drug in water, 0.1N HCl and phosphate buffer pH 7.4 media. The DSC, TG-DSC, powder XRD and SEM morphology results reveal that there is solid transition from crystalline structure to amorphous state, which supports the solubility enhancement. The FT-IR gives the compatibility results for drug with other excipients. The Efavirenz nanoparticles

* Correspondence: vedhahari@scbt.sastra.edu

¹Department of Pharmacy, School of Chemical and Bio-Technology, SASTRA University, Thanjavur-613 401, Tamil Nadu, India

subjected for in-vitro cytotoxicity and cell uptake studies using monocytes / macrophages (THP-1) proved better uptake (Flocytometry and Confocal microscope) of nanoparticles than free drug.

Conclusion

The solubility enhancement due to nanosizing helps in hastening the drug release and also increasing cell uptake, which helps in attaining high bioavailability with low dose of Efavirenz.

Author details

¹Department of Pharmacy, School of Chemical and Bio-Technology, SASTRA University, Thanjavur-613 401, Tamil Nadu, India. ²Department of Pharmaceutics, Madras Medical College, Chennai-600001, Tamil Nadu, India.

Published: 4 May 2012

doi:10.1186/1471-2334-12-S1-P7

Cite this article as: Hari et al.: Development of Efavirenz nanoparticle for enhanced efficiency of anti-retroviral therapy against HIV and AIDS. BMC Infectious Diseases 2012 12(Suppl 1):P7.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2012 Hari et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Bio Med Central Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Full list of author information is available at the end of the article