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Abstract

Background: Staphylococcus aureus has been associated with the exacerbation and severity of atopic dermatitis
(AD). Studies have not investigated the colonisation dynamics of S. aureus lineages in African toddlers with AD. We
determined the prevalence and population structure of S. aureus in toddlers with and without AD from rural and
urban South African settings.

Methods: We conducted a study of AD-affected and non-atopic AmaXhosa toddlers from rural Umtata and urban
Cape Town, South Africa. S. aureus was screened from skin and nasal specimens using established microbiological
methods and clonal lineages were determined by spa typing. Logistic regression analyses were employed to assess
risk factors associated with S. aureus colonisation.

Results: S. aureus colonisation was higher in cases compared to controls independent of geographic location (54%
vs. 13%, p < 0.001 and 70% vs. 35%, p = 0.005 in Umtata [rural] and Cape Town [urban], respectively). Severe AD was
associated with higher colonisation compared with moderate AD (86% vs. 52%, p = 0.015) among urban cases.
Having AD was associated with colonisation in both rural (odds ratio [OR] 7.54, 95% CI 2.92–19.47) and urban (OR
4.2, 95% CI 1.57–11.2) toddlers. In rural toddlers, living in an electrified house that uses gas (OR 4.08, 95% CI 1.59–
10.44) or utilises kerosene and paraffin (OR 2.88, 95% CI 1.22–6.77) for heating and cooking were associated with
increased S. aureus colonisation. However, exposure to farm animals (OR 0.3, 95% CI 0.11–0.83) as well as living in a
house that uses wood and coal (OR 0.14, 95% CI 0.04–0.49) or outdoor fire (OR 0.31, 95% CI 0.13–0.73) were
protective. Spa types t174 and t1476, and t272 and t1476 were dominant among urban and rural cases,
respectively, but no main spa type was observed among controls, independent of geographic location. In urban
cases, spa type t002 and t442 isolates were only identified in severe AD, t174 was more frequent in moderate AD,
and t1476 in severe AD.

Conclusion: The strain genotype of S. aureus differed by AD phenotypes and rural-urban settings. Continued
surveillance of colonising S. aureus lineages is key in understanding alterations in skin microbial composition
associated with AD pathogenesis and exacerbation.
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Introduction
Atopic dermatitis (AD) is a common childhood inflam-
matory skin disease that frequently presents in early
childhood [1]. The prevalence of AD is high in devel-
oped countries where it affects 10–20% of children [2].
However, recent epidemiological data indicate an in-
crease in the prevalence of AD among children in devel-
oping countries, including South Africa [3–5]. The
increasing prevalence of AD and allergy is also associ-
ated with urbanisation with a lower prevalence and
microbial-related protective environmental factors noted
in rural areas [3, 6]. Patients with AD usually suffer from
persistent or relapsing itchy and dry eczematous skin le-
sions with inflammation and increased susceptibility to
cutaneous Staphylococcus aureus (S. aureus) colonisation
associated with perturbation of the skin microbial com-
munity [7, 8]. In addition to skin colonisation, S. aureus
has also been reported to colonise the nasal cavity as a
primary reservoir for extra-nasal auto-transmission [9].
Skin and nasal S. aureus colonisation have been demon-
strated in both AD patients and healthy individuals;
however, a higher colonisation density and prevalence
have been described in AD patients [9]. S. aureus colon-
isation has also been associated with AD pathogenesis
[10], with colonisation preceding the clinical onset of
AD in early childhood [11]. S. aureus produces a variety
of virulence factors, including superantigens, proteases,
as well as dermolytic and cytolytic toxins which contrib-
ute to the progression of AD [12]. Nonetheless, other
staphylococcal species, including S. epidermidis and S.
haemolyticus have been implicated in the

pathophysiology of AD by the degradation of epidermal
structural proteins [13, 14]. Molecular epidemiological
studies have shown that while colonisation occurs in
both AD patients and healthy individuals, the genetic
background of colonising S. aureus strains differ across
AD disease phenotypes and may influence disease patho-
genesis and severity [1, 15]. We hypothesised that geo-
graphic location affects S. aureus colonisation in AD and
health through distinct environmental exposures. Here,
we report the prevalence and genotypes of S. aureus
from skin and nasal samples of AmaXhosa AD and non-
AD toddlers in rural and urban South African settings.
In addition, we evaluated the risk factors for S. aureus
colonisation in each geographic location.

Materials and methods
Study design, setting and population
Participant recruitment
We conducted a cross-sectional study of 220 toddlers
with and without AD aged 12–36 months (overall mean
age 22.4 months; standard deviation 0.54months) from
February 2015 to May 2016 (Fig. 1) [6, 16]. Urban con-
trol subjects (n = 50) were recruited as a sub-study from
non-allergic, non-food-sensitised subjects participating
in the South African Food Allergy (SAFFA) study at ran-
domly selected creches in the Cape Town metropole. As
creches are rarely found in the rural district, rural con-
trols (n = 54) were recruited from toddlers of eligible age
from the areas surrounding 10 district community health
clinics in the rural Mqanduli district of Umtata. Patients
with moderate to severe AD (n = 56) were recruited from

Fig. 1 Flow chart of participants’ sample processing. Eleven participants (eight cases and three controls) had one unavailable specimen for either
the lesional skin, nonlesional skin or anterior nares
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the Department of Paediatric Dermatology of the Red
Cross War Memorial Children’s Hospital in Cape Town
and rural cases (n = 60) from the Department of Derma-
tology, Nelson Mandela Academic Hospital, in Umtata.
AD was clinically diagnosed by a dermatologist using
the validated UK Working Party diagnosis criteria for
AD [17]. Disease severity was determined using the ob-
jective SCORAD (SCORing of Atopic Dermatitis) index
into moderate (15–40) and severe (> 40) [18]. Guardians
completed a questionnaire aimed at determining envir-
onmental exposures as previously described [19].

Specimen collection and processing
Sterile Copan nylon-tipped flocked swabs (Cat. no.
516C; Copan Italia, Brescia, Italy) were used to collect
samples from lesional (i.e., most active area of eczema-
tous skin with acute and/or chronic changes) and non-
lesional skin (i.e., area with the most normal-appearing
skin – usually the back). The swab was pre-moistened
with sterile distilled water and a 4 cm2 area of the skin
lesion was swabbed for at least 1 min in a non-
overlapping manner. In addition, nasal swabs were col-
lected from all participants to determine the S. aureus
carriage status according to previously described meth-
odology [20]. The collected swabs were immediately
placed into 1 ml skim milk-tryptone-glucose-glycerol
(STGG), transported at 4 °C to the laboratory within two
hours of collection and frozen at − 80 °C for subsequent
batch processing. All lesional, non-lesional, and nasal
swabs stored in STGG were allowed to thaw at room
temperature, vortexed for 30 s and 100 μl was inoculated
onto Mannitol Salt Agar (MSA) (National Health La-
boratory Services [NHLS], Green Point Media Labora-
tory Cape Town, South Africa), and aerobically
incubated at 37 °C for 48 h. Isolates that were positive
for both mannitol fermentation and DNase production
were presumptively identified as S. aureus [21].

Nucleic acid extraction
Recovered S. aureus isolates were aerobically subcul-
tured onto 2% sheep blood agar at 37 °C overnight. Gen-
omic DNA extraction was completed using a modified
heat lysis method [22]. Briefly, colonies were re-
suspended in AVE buffer (Qiagen, Hilden, Germany) in-
stead of phosphate-buffered saline and centrifuged at 13,
000 g for two minutes. The supernatant containing gen-
omic DNA was diluted in AVE buffer depending on the
initial DNA concentration to a final concentration range
of 20-70 ng/μl.

Molecular identification of the S. aureus isolates
Isolates presumptively identified as S. aureus were
screened for the thermonuclease (nuc) gene using
species-specific primers as previously described [23].

Molecular characterisation
S. aureus isolates were characterised by staphylococcus pro-
tein A (spa) typing targeting the variable X-region of the
gene using the conventional primers spa-1113F/spa-1514R
[24, 25]. Isolates that failed to yield a spa amplicon or had
poor sequence quality were re-analysed using alternative spa
primers T3F/1517R or 1095F/1517R [26, 27]. Clustering was
based on their genetic relatedness to spa-clonal complexes
(spa-CCs) using the Based Upon Repeat Pattern (BURP)
clustering algorithm of the Ridom Staph Type software
(Ridom GmbH, Münster, Germany) [28]. PCR detection of
the nuc gene was performed to rule out misidentification of
isolates that failed to yield a spa amplicon [23].

Statistical analysis
All data analyses were performed using Stata version
SE16.0 (1985–2019 StataCorp LP, Texas, USA). The sig-
nificance threshold for all analyses was 0.05. Univariate
and multivariate analyses to assess risk factors for S. aur-
eus colonisation were performed using logistic regression
and presented as odd ratios (OR) and adjusted ORs
(aOR) reported with a 95% confidence interval (CI). The
level of statistical significance in the logistic regression
analysis was determined by a Chi-square test. Variables
that were significant determinants for colonisation were
included in the multivariate logistic regression model.
Comparison of categorical data was performed by Chi-
squared test unless stated otherwise. Comparison of
means was performed using the t-test for two independ-
ent samples reported with a standard deviation (SD).
Participants with missing data were excluded from the
analyses relating to that variable.

Results
S. aureus colonisation in cases and controls
A total of 185 (84 controls and 101 cases) toddlers were
assessed for S. aureus colonisation (Table 1). Thirty-five
participants were excluded (missing specimen) from the
study analysis (Fig. 1). Of these, 79 (43%) were colonised
with S. aureus in at least one of the sampled body sites.
There was an overall higher prevalence of colonisation
among urban participants compared to rural participants
(55% [41/74] vs. 34% [38/111], p = 0.006). S. aureus was
commonly detected from cases compared to controls in
both rural (54% [31/58] vs. 13% [7/53], p < 0.001 and
urban settings (70% [30/43] vs. 35% [11/31], p = 0.005).
Furthermore, cases were more frequently colonised on
non-lesional skin compared to controls, and this was in-
dependent on geographic location (Additional file 1:
Table S1). Among cases, colonisation was more common
on lesional skin compared to non-lesional skin (rural:
p = 0.035 and urban: p = 0.021) and the anterior nares
(rural: p = 0.008). The prevalence of colonisation was
common among urban cases with severe disease (86%
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Table 1 Participant characteristics of atopic dermatitis cases and healthy controls

Explanatory variable Umtata Cape Town

Total, n (%) Case, n (%) Control, n (%) p-value Total, n (%) Case, n (%) Control, n (%) p-value

Total 111 (100) 58 (52) 53 (48) 0.502a 74 (100) 43 (58) 31 (42) 0.049a

Age (months)

Mean [standard deviation] 21.27 [7.15] 21.03 [7.41] 21.53 [6.90] 0.718 24.19 [7.37] 23.98 [7.44] 24.48 [7.38] 0.773

Sex

Female 42 (39) 24 (43) 18 (34) 0.431 36 (49) 19 (44) 17 (55) 0.480

Male 67 (61) 32 (57) 35 (66) 38 (51) 24 (56) 14 (45)

AD severity

Moderate 23 (40) 23 (40) – 21 (49) 21 (49) –

Severe 35 (60) 35 (60) – 22 (51) 22 (51) –

Atopic disease

Food allergy 11 (10) 10 (17) 1 (2) 0.009 9 (12) 9 (21) 0 (0) 0.008

Asthma 0 (0) 0 (0) 0 (0) 1 (1) 1 (3) 0 (0) 1.000

Allergic rhinitis 7 (8) 1 (2) 6 (11) 0.242 1 (1) 1 (3) 0 (0) 1.000

Mode of birth

Caesarean section 25 (23) 14 (24) 11 (21) 0.821 33 (46) 20 (49) 13 (42) 0.637

Vaginal 86 (77) 44 (76) 42 (79) 39 (54) 21 (51) 18 (58)

Breastfeeding 35 (32) 10 (17) 25 (47) 0.001 9 (12) 7 (16) 2 (6) 0.288

Antibiotic exposure 92 (82) 49 (83) 43 (81) 0.810 54 (72) 30 (70) 24 (77) 0.598

Immunisation status

Complete 107 (96) 56 (95) 52 (98) 0.620 64 (86) 33 (77) 31 (100) 0.004

Incomplete 4 (4) 3 (5) 1 (2) 10 (14) 10 (23) 0 (0)

Large family a 62 (55) 30 (52) 32 (60) 0.445 24 (32) 14 (33) 10 (32) 1.000

Animal exposure 93 (84) 39 (67) 53 (100) 0.001 2 (3) 2 (6) 0 (0) 0.495

Parental education

Primary 8 (7) 2 (3) 6 (11) 0.001 1 (1) 1 (2) 0 (0) 0.025

Secondary 70 (63) 31 (53) 39 (74) 33 (45) 14 (33) 19 (61)

Tertiary 31 (28) 25 (43) 6 (11) 40 (54) 28 (65) 12 (39)

Other 2 (2) 0 (0) 2 (4) 0 (0) 0 (0) 0 (0)

Maternal factors

Animal exposure 96 (86) 44 (76) 52 (98) 0.001 4 (60) 4 (11) 0 (0) 0.120

Pregnant smoking 1 (1) 0 (0) 1 (2) 0.482 3 (45) 0 (0) 3 (10) 0.094

Smoking 1 (1) 0 (0) 1 (2) 0.477 4 (6) 1 (3) 3 (10) 0.324

Asthma 2 (2) 2 (3) 0 (0) 0.496 6 (8) 4 (10) 2 (6) 1.000

Allergic rhinitis 4 (4) 4 (7) 0 (0) 0.120 5 (68) 4 (10) 1 (3) 0.387

Atopic dermatitis 2 (2) 2 (3) 0 (0) 0.496 3 (4) 2 (5) 1 (3) 1.000

Food allergy 3 (3) 2 (3) 1 (2) 1.000 1 (1) 1 (2) 0 (0) 1.000

Paternal factors

Smoking 15 (14) 9 (16) 6 (12) 0.589 20 (31) 11 (31) 9 (31) 1.000

Asthma 3 (3) 3 (5) 0 (0) 0.245 0 (0) 0 (0) 0 (0)

Allergic rhinitis 3 (3) 3 (5) 0 (0) 0.245 7 (10) 7 (17) 0 (0) 0.018

Atopic dermatitis 1 (1) 1 (2) 0 (0) 1.000 2 (3) 2 (5) 0 (0) 0.505

Food allergy 1 (1) 1 (2) 0 (0) 1.000 1 (1) 1 (2) 0 (0) 1.000

Household factors
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[19/22] vs. 52% [11/21], p = 0.015), however, this was not
associated with the site of colonisation (Additional file 2:
Table S2). Overall, these findings show that geographic
location influences the dynamics of S. aureus colonisa-
tion on skin and nares in AD and non-AD, and this is
dependent on the site of colonisation and disease
severity.

Risk factors associated with S. aureus colonisation across
the locations
The effect of various risk factors on colonisation with S.
aureus in toddlers from both locations using logistic re-
gression are shown in Tables 2 and 3, for rural and
urban toddlers, respectively. The univariate analysis
models showed that having AD was associated with col-
onisation in both rural (OR 7.54, 95% CI 22.92–19.47)
and urban (OR 4.2, 95% CI 1.57–11.2) toddlers. Also,
living in an electrified house that utilises gas (OR 4.08,
95% CI 1.59–10.44) and kerosene and paraffin (OR 2.88,
95% CI 1.22–6.77) for heating and cooking were associ-
ated with an increased risk of S. aureus among the rural
toddlers. Surprisingly, exposure to farm animals (OR 0.3,
95% CI 0.11–0.83) as well as living in a house that uses
wood and coal (OR 0.14, 95% CI 0.04–0.49) and outdoor
fire (OR 0.31, 95% CI 0.13–0.73) were associated with
lower odds of colonisation. In the multivariate model of
rural toddlers, having AD (aOR 8.02, 95% CI 1.28–
50.37) was retained as a risk factor for S. aureus colon-
isation, while living in a house that uses wood and coal
for cooking and heating (aOR 0.02, 95% CI 0.02–0.99)
remained protective against S. aureus colonisation. No
regression analysis was performed for urban toddlers be-
cause only AD showed an association with S. aureus. In
summary, the findings highlight the importance of the
immediate environment, or exposome, in S. aureus
colonisation.

Clonal lineages of recovered S. aureus isolates
A total of 125 skin and nasal S. aureus isolates were re-
covered from cases and controls, however, only 108 iso-
lates were characterised by spa typing (Fig. 1). Seventeen

isolates were excluded from molecular analysis due to
their failure to amplify the spa gene using the described
primers or poor sequence quality for spa type assign-
ment despite repeated sequencing. BURP analysis
grouped 19 spa types into 6 spa-clonal complexes (spa-
CCs) and 15 spa types were singletons. Among toddlers
with spa typed isolates, 25% (19/76) were colonised with
one spa type, while 7% (5/76) were colonised with differ-
ent spa types on at least two of the sampled sites which
were positive for S. aureus. One rural case toddler was
colonised with spa type t062 on lesional skin and anter-
ior nares, and with spa type t1399 on non-lesional skin
which belongs to the same spa-CC. The most frequent
spa types were spa-CC002/t002 (spa-CC/spa type; 8%),
spa cluster 4/t272 (9%), spa cluster 6/t174 (14%) and spa
cluster 5/t1476 (18%). Furthermore, we identified four
new (t15783, t18354, t18750 and t19774) and one un-
assigned spa types (i.e., txAC).

Distribution of S. aureus spa clonal lineages across
locations by AD disease and severity
The rural and urban toddlers were colonised by different
S. aureus spa clonal lineages. The spa cluster 4 was fre-
quently identified among rural toddlers (18% [9/51] vs.
4% [2/57], p = 0.015) and spa cluster 6 in urban toddlers
(23% [13/57] vs. 6% [3/51], p = 0.013) compared to their
respective counterparts based on all sampled sites
(Table 4). The diversity of spa types among cases was
higher compared to controls in both locations (Fig. 2).
Moreover, comparative analysis revealed that there was
an overall significant difference in the distribution of spa
clonal lineages between urban cases and controls (p =
0.009), with spa cluster 5/t1476 and spa cluster 6/t174
identified as predominant among cases. There was no
overall difference between rural cases and controls (p =
0.224), albeit, spa cluster 4/t272 and spa cluster 5/t1476
were the dominant spa clonal lineages among cases with
no single most dominant spa clonal lineage among con-
trols (Fig. 2). We also noted a significant difference in
the distribution of spa clonal lineages among urban
cases based on AD severity (p = 0.001). In these cases,

Table 1 Participant characteristics of atopic dermatitis cases and healthy controls (Continued)

Explanatory variable Umtata Cape Town

Total, n (%) Case, n (%) Control, n (%) p-value Total, n (%) Case, n (%) Control, n (%) p-value

Electricity + gas 69 (62) 56 (97) 13 (25) 0.001 66 (99) 35 (97) 31 (100) 1.000

Kerosene + paraffin 64 (58) 44 (76) 20 (38) 0.001 43 (64) 21 (58) 22 (71) 0.317

Paraffin 38 (34) 6 (10) 32 (60) 0.001 0 (0) 0 (0) 0 (0)

Indoor fire 4 (4) 2 (3) 2 (4) 1.000 0 (0) 0 (0) 0 (0)

Outdoor fire 49 (44) 12 (21) 37 (70) 0.001 0 (0) 0 (0) 0 (0)

Wood + fire 31 (28) 4 (7) 27 (51) 0.001 0 (0) 0 (0) 0 (0)

Bold text indicates statistical significance. AD atopic dermatitis, CI confidence interval, IQR interquartile range; a Large family is arbitrarily defined as 7 or more
members living within one household

Ndhlovu et al. BMC Infectious Diseases          (2021) 21:348 Page 5 of 13



spa-CC002 (t002 and t442) isolates were only identi-
fied in severe AD, spa cluster 6/t174 was more
frequent in moderate AD, and spa cluster 5/
t1476 in severe AD. Although no significant dif-
ference was observed between AD severity and
the identified spa types in rural cases (p = 0.126),
spa cluster 3 (t062 and t1399) isolates were only
detected in moderate cases while spa cluster 5
(t1476 and t1257) isolates predominated in se-
vere cases (Fig. 3).

Discussion
We conducted a cross-sectional, case-control study to
determine the molecular epidemiology of S. aureus colo-
nising the skin and nasal cavity of AD-affected and
healthy South African AmaXhosa toddlers. We observed
a higher prevalence of colonisation in cases compared to
controls, regardless of geographic location. The distribu-
tion of S. aureus spa clonal lineages differed between
rural-urban settings and differentially associated with
AD disease and severity. Moreover, determinants of S.

Table 2 Unconditional logistic regression analysis of child, parental, domestic and environmental characteristics associated with S.
aureus colonisation in Umtata participants

Explanatory variable Colonised a, n (%) Not colonised, n (%) OR [95% CI] p-value aOR [95% CI] p-value

AD: case 31 (28) 27 (24) 7.54 [2.92–19.47] 0.000 8.02 [1.28–50.37] 0.026

Sex: male 21 (19) 46 (42) 0.74 [0.33–1.67] 0.469 0.83 [0.32–2.16] 0.696

Child characteristics

Breastfeeding 10 (9) 25 (23) 0.69 [0.29–1.63] 0.395 1.46 [0.48–4.47] 0.503

Allergic rhinitis 1 (1) 6 (7) 0.43 [0.05–3.79] 0.449 Excluded

Asthma § 0 (0) 0 (0) Omitted d Excluded

Food allergy 5 (5) 6 (5) 1.69 [0.48–5.95] 0.413 Excluded

Mode of delivery: vaginal 29 (26) 57 (51) 0.9 [0.36–2.29] 0.833 Excluded

Incomplete immunisation status 2 (2) 2 (2) 1.97 [0.27–14.58] 0.506 Excluded

Antibiotic exposure 33 (30) 58 (52) 1.71 [0.57–5.12] 0.34 1.54 [0.39–6] 0.536

Large family size b 15 (14) 35 (32) 0.71 [0.32–1.57] 0.395 0.94 [0.36–2.44] 0.903

Animal exposure c 27 (24) 65 (59) 0.3 [0.11–0.83] 0.021 0.53 [0.11–2.54] 0.429

Fossil fuel exposure

Electricity + gas 31 (28) 38 (34) 4.08 [1.59–10.44] 0.003 0.35 [0.05–2.47] 0.295

Kerosene + paraffin 28 (25) 36 (32) 2.88 [1.22–6.77] 0.015 0.69 [0.19–2.49] 0.571

Indoor fire 1 (1) 3 (3) 0.63 [0.06–6.27] 0.694 Excluded

Outdoor fire 10 (9) 39 (35) 0.31 [0.13–0.73] 0.008 0.54 [0.17–1.67] 0.283

Wood + coal 3 (3) 28 (25) 0.14 [0.04–0.49] 0.002 0.14 [0.02–0.99] 0.048

Maternal factors

Allergic rhinitis 0 (0) 4 (4) Omitted d Excluded

Asthma 1 (1) 1 (1) 1.95 [0.12–32] 0.641 Excluded

Atopic dermatitis 1 (1) 1 (1) 1.95 [0.12–32] 0.641 Excluded

Food allergy 1 (1) 2 (2) 0.96 [0.08–10.93] 0.973 Excluded

Smoking 0 (0) 1 (1) Omitted Excluded

Pregnant smoker 0 (0) 1 (1) Omitted Excluded

Animal exposure c 31 (28) 65 (59) 0.55 [0.18–1.64] 0.28 1.93 [0.37–10.16] 0.438

Paternal factors

Allergic rhinitis § 0 (0) 3 (3) Omitted Excluded

Asthma § 1 (1) 2 (2) 0.96 [0.08–10.93] 0.973 Excluded

Atopic dermatitis § 0 (0) 1 (1) Omitted Excluded

Food allergy § 0 (0) 1 (1) Omitted Excluded

Smoking 5 (5) 10 (9) 0.94 [0.3–2.98] 0.267 Excluded

AD atopic dermatitis, OR odds ratio, aOR adjusted odds ratio, CI confidence interval; § No within group variance; a Colonisation with Staphylococcus aureus; b Large
family size is arbitrarily defined as 7 or more members within a household; c Animal exposure refers to farm animals; d Independent variables omitted due to
dependency in the regression model
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aureus colonisation varied across the rural-urban
settings.
The pathogenesis of AD is characterised by epider-

mal barrier defects and activation of inflammatory re-
sponses leading to impaired clearance of skin
pathogens and a decrease in skin microbial diversity
[10]. S. aureus dominance is consistently linked with
acute AD flares and severe forms of the disease [29,
30]. We noted a higher prevalence of S. aureus

colonisation among cases compared to controls which
was independent of geographic location (55% vs. 13
and 70% vs. 35% in rural and urban locations, re-
spectively). These findings are consistent with a simi-
lar study in Italy that reported a prevalence of 57%
vs. 20% in cases compared to controls [31]. Therefore,
these findings support the relationship between S.
aureus predominance and AD, regardless of popula-
tion and location [9, 31].

Table 3 Unconditional logistic regression analysis of child, parental, domestic and environmental characteristics associated with S.
aureus colonisation in Cape Town participants

Explanatory variable Colonised a, n (%) Not colonised, n (%) OR [95% CI] p-value

AD: case 30 (41) 13 (18) 4.2 [1.57–11.2] 0.004

Sex: male 19 (26) 19 (25) 0.74 [0.33–1.67] 0.469

Child characteristics

Breastfeeding 6 (8) 3 (4) 1.71 [0.39–7.45] 0.472

Atopic dermatitis

Allergic rhinitis 1 (1) 0 (0) Omitted d

Asthma § 1 (1) 0 (0) Omitted d

Food allergy 6 (8) 3 (4) 1.71 [0.39–7.45] 0.472

Mode of delivery: vaginal 22 (31) 17 (24) 0.95 [0.37–2.43] 0.921

Incomplete immunisation status 8 (11) 2 (3) 3.76 [0.74–19.09] 0.11

Antibiotic exposure 31 (42) 23 (31) 1.35 [0.48–3.77] 0.57

Large family size b 9 (12) 8 (11) 0.88 [0.3–2.61] 0.816

Animal exposure c 1 (1) 1 (1) 0.86 [0.05–14.3] 0.915

Fossil fuel exposure

Electricity + gas 36 (54) 30 (45) Omitted d

Kerosene + paraffin 20 (30) 23 (34) 0.43 [0.15–1.23] 0.116

Indoor fire 0 (0) 0 (0) Omitted d

Outdoor fire 0 (0) 0 (0) Omitted d

Wood + coal 0 (0) 0 (0) Omitted d

Maternal factors

Allergic rhinitis 0 (0) 5 (7) Omitted d

Asthma 3 (4) 3 (4) 0.76 [0.14–4.06] 0.751

Atopic dermatitis 1 (1) 2 (3) 0.38 [0.03–4.33] 0.432

Food allergy 1/73 0 (0) Omitted d

Smoking 3 (4) 1 (1) 2.65 [0.26–26.82] 0.41

Pregnant smoker 2 (3) 1 (1) 1.76 [0.15–20.45] 0.65

Animal exposure c 3 (5) 1 (2) 2.64 [0.26–26.76] 0.412

Paternal factors

Allergic rhinitis § 5 (7) 2 (3) 2.08 [0.38–11.52] 0.4

Asthma § 0 (0) 0 (0) Omitted d

Atopic dermatitis § 2 (3) 0 (0) Omitted d

Food allergy § 1 (1) 0 (0) Omitted d

Smoking 13 (20) 7 (11) 1.86 [0.62–5.54] 0.267

AD atopic dermatitis, OR odds ratio, CI confidence interval; § No within group variance; a Colonisation with Staphylococcus aureus. b Large family size is arbitrarily
defined by more than 6 members within a household; c Animal exposure refers to exposure to farm animals; d Independent variables omitted due to dependency
in the regression model
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AD-lesional skin has been shown to be more suscep-
tible to S. aureus colonisation compared to AD-
uninvolved, non-lesional skin, with a reported prevalence
of colonisation of 23–70% vs. 6–39% [9, 32, 33]. Simi-
larly, we noted a higher frequency of colonisation on
lesional skin compared to non-lesional skin among
urban and rural cases. Furthermore, similar colonisation
rates on lesional skin and anterior nares have been re-
ported in AD, with S. aureus nasal colonisation sug-
gested as the main source of the increased skin

colonisation in AD [9, 34]. However, we observed that
lesional skin was more frequently colonised compared to
the anterior nares among rural cases, suggesting a non-
nasal source of S. aureus for the increased colonisation
on lesional skin in rural AD or transient nasal colonisa-
tion [31, 35].
Skin barrier dysfunction in AD lesions, particularly in

severe AD, has been correlated with increased S. aureus
colonisation [36, 37]. In agreement with recent studies
[9, 33, 37], we noted a higher prevalence of colonisation

Table 4 Distribution of clonal lineages of S. aureus isolates among Umtata and Cape Town participants

spa-CC Umtata Cape Town

No. of
isolates
(%)

No. of spa
types (%)

spa types (no. of isolates) No. of
isolates
(%)

No. of
spa types
(%)

spa types (no. of isolates)

spa-CC002 9 3 (14) t002 (4); t045 (2); t071 (3) 10 4 (19) t002 (5); t1215 (2); t18748 (1);
t442 (2)

spa-CC084 3 2 (10) t084 (2); t491 (1); t19774 (1) 5 2 (10) t084 (3); t346 (2)

spa cluster 3 3 2 (10) t062 (2); t1399 (1) 3 2 (10) t062 (1); t2049 (2)

spa cluster 4 9 2 (10) t159 (1); t272 (8) 2 1 (5) t272 (2)

spa cluster 5 12 2 (10) t1476 (10); t1257 (2) 10 2 (10) t1476 (9); t18750 (1)

spa cluster 6 3 1 (5) t174 (3) 13 2 (10) t174 (12); t5471 (1)

Singletons 10 7 (33) t015 (2); t148 (1); t2763 (1);
t317 (3); t355 (1); t786 (1); t843
(1)

13 7 (33) t015 (2); t18354 (1); t1597 (1);
t2078 (4); t335 (2); t881 (1); t891
(2)

Unaligned/spa types with
unknown repeat succession

2 2 (10) txAC (1) 1 1 (5) t15783 (1)

Total 51 21 57 21

Bold text indicates spa types that were identified in only one location

Fig. 2 Distribution of spa types by disease phenotype stratified by location. a rural case, (b) rural control, (c) urban case, and (d) urban control.
Percentages were calculated by the number of isolates for a spa type divided by the total number of spa types in each group
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based on all sampled sites in cases with severe AD, how-
ever, this was limited to urban cases and not rural cases.
Geographical location has been postulated to influence
microbial colonisation and may explain the varied sus-
ceptibility of geographical populations to skin patholo-
gies [38]. In this regard, the study communities each
represent a geographic population that is uniquely af-
fected by S. aureus colonisation in the pathophysiology
of AD. Moreover, the rural and urban populations, re-
gardless of disease, are generally different populations
with distinct sensitisation patterns to environmental ex-
posures [16] and inflammatory immune responses [39].
These may in turn affect microbial colonisation and the
contribution thereof to disease pathogenesis and
pathophysiology.
Risk factors for bacterial colonisation on the skin and

nasal cavity differ with rural-urban living [40, 41]. The
association between S. aureus colonisation and AD is
well studied, with some studies reporting colonisation
preceding the onset of clinically appreciable AD in tod-
dlers and further associated with disease severity [11].
Consistent with previous reports [30], having AD in both
communities was associated with S. aureus colonisation.
Exposure to air pollutants has also been associated with
increased skin barrier damage [42] which increases the
propensity to S. aureus colonisation [43]. In rural tod-
dlers, we observed that living in a house that uses kero-
sene and paraffin which release fine air particulates [44]
was associated with increased S. aureus colonisation.
However, exposure to the burning of wood/coal or out-
door fire, which also release fine air pollutants that may

induce cutaneous irritation was associated with reduced
S. aureus colonisation in rural toddlers. The effect of en-
vironmental air pollutants in children is a function of ex-
posure time [45]. Although the toddlers are living in
homes that use wood/coal or an outdoor fire for cooking
and heating, they might have limited exposure to the
produced particulates which restrict the possible effect
on skin irritation and susceptibility to S. aureus. Electri-
city and biogas are relatively “clean fuels” with minimal
air pollution emission at the household level [46]. In
contrast, we found that rural living in an electrified
house that also utilises gas increased the risk of S. aureus
colonisation. Animals are reservoirs for human S. aureus
colonisation [47], however, we found that rural toddlers
living in a house with farm animals were associated with
a reduced risk of S. aureus colonisation. Similarly, this
finding could be due to the absence of direct interaction
between toddlers and animals hence there are no
animal-to-human S. aureus transmission events. None-
theless, AD remained a risk factor while living in a house
that uses wood and coal was protective against S. aureus
colonisation in rural toddlers in the multivariate regres-
sion model. These findings highlight the importance of
the immediate environment in shaping bacterial colon-
isation dynamics and the potential implication thereof in
AD pathogenesis.
In addition to microbial colonisation, geographic loca-

tion also determined the genotype of the colonising bac-
teria [48]. We noted heterogeneity in the distribution of
the colonising spa clonal lineages based on geographic
location, with rural toddlers mostly colonised by spa

Fig. 3 Distribution of spa types by disease severity. a rural moderate, (b) rural severe, (c) urban moderate, and (d) urban severe. Percentages were
calculated by the number of isolates for a spa type divided by the total number of spa types in each group
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types belonging to the spa cluster 4 (previously associ-
ated with MLST CC121, Table S1) [49] while urban tod-
dlers were predominantly colonised with spa cluster 6
(CC1) isolates [50]. This is similar to studies that suggest
that location may play a role in the colonisation dynam-
ics of childhood skin and nares [1, 15, 51, 52]. Further-
more, urban cases and controls exhibited distinct S.
aureus spa clonal lineages, however, there was no differ-
ence in the distribution of S. aureus lineages between
rural cases and controls. These findings suggest that the
rural-urban locations provide a specific niche for the se-
lection of certain S. aureus clonal lineages which sequen-
tially influence the population structure in these settings,
and associated colonisation dynamics. Future studies are
essential to investigate site-specific features in this co-
hort that contribute to the observed S. aureus popula-
tion structures and their association with disease
phenotype.
The relationship between disease severity and the

clonal lineages of the colonising S. aureus isolates is un-
clear with some studies reporting an association between
specific clonal lineages and AD severity [15, 51] and
others demonstrating none [34, 53]. In spite of this, we
noted different distributions of S. aureus clonal lineages
depending on AD severity among urban cases. Here, spa
clonal lineages spa cluster 5 (CC5) [54] and spa cluster 6
(CC1) [50] were the most common in severe and moder-
ate AD, respectively. The spa-CC002 (CC5) [15] isolates
were only detected in severe AD cases. These findings
are in agreement with a study in Spanish children which
reported a predominance of CC5 isolates in severe AD
[51] and another on the predominance of CC1 isolates
in moderate AD [34], but in contrast to a report of the
predominance of CC5 in moderate disease among Can-
adian children with AD [15]. There was a difference in
the distribution of spa clonal lineages among rural
cases based on disease severity. Albeit, spa cluster 3
(CC5) [49, 55] isolates were only identified in rural
cases with moderate AD and spa cluster 6 (CC1)
[50] isolates were frequent in rural cases with severe
AD. The predominance of spa cluster 3 (CC5) iso-
lates is similar to that noted in moderate AD else-
where [15] while that of spa cluster 6 (CC1) isolates
in severe AD is in contrast to previous reports of
the high prevalence of CC1 isolates in children with
moderate AD [34]. The contrasting predominance of
S. aureus clonal lineages based on disease severity
across the rural-urban communities emphasises the
importance of the environment in the contribution
of bacterial clonality in disease. Therefore, more in-
vestigations are needed to determine if certain S.
aureus clonal lineages are associated with differen-
tial AD disease severity and the concomitant contri-
bution to AD and disease severity.

Our data are subject to a few limitations. BURP ana-
lyses are limited to spa types with a cut-off ≤ 5 repeats,
which excludes spa types with the number of repeats
below the set parameter [28]. Therefore, spa type t15783
was excluded from BURP clustering analyses. Secondly,
we predicted the corresponding MLST sequence types
(STs) and CCs of the S. aureus spa types identified in
this study by extrapolating data from previous studies
(Additional file 3: Table S3). Furthermore, 14% (17/125)
of the isolates were untypeable which highlights the need
for whole-genome sequencing (WGS) to provide both
spa and MLST data for detailed characterisation [1].

Conclusion
Our study shows that toddlers with AD are more fre-
quently colonised with S. aureus compared to non-AD
controls. The genetic background of colonising S. aureus
is a unique signature of AD and disease severity, however,
this is largely dependent on rural-urban living. These find-
ings highlight the importance of geographic location on
the colonisation epidemiology and population structure of
S. aureus as well as the associated colonisation determi-
nants in childhood health and AD disease in South Africa.
Future studies are planned to examine the mechanisms
within the rural-urban environments that contribute to S.
aureus colonisation dynamics and the association thereof
with AD and disease severity. This information will pro-
vide insights into population-specific therapeutic strategies
that may be harnessed in the restoration of microbial di-
versity in AD-affected toddlers.
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