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Abstract 

Background: Lockdowns imposed throughout the US to control the COVID-19 pandemic led to a decline in all rou-
tine immunizations rates, including the MMR (measles, mumps, rubella) vaccine. It is feared that post-lockdown, these 
reduced MMR rates will lead to a resurgence of measles.

Methods: To measure the potential impact of reduced MMR vaccination rates on measles outbreak, this research 
examines several counterfactual scenarios in pre-COVID-19 and post-COVID-19 era. An agent-based modeling frame-
work is used to simulate the spread of measles on a synthetic yet realistic social network of Virginia. The change in 
vulnerability of various communities to measles due to reduced MMR rate is analyzed.

Results: Results show that a decrease in vaccination rate (α) has a highly non-linear effect on the number of measles 
cases and this effect grows exponentially beyond a threshold (α) . At low vaccination rates, faster isolation of cases and 
higher compliance to home-isolation are not enough to control the outbreak. The overall impact on urban and rural 
counties is proportional to their population size but the younger children, African Americans and American Indians 
are disproportionately infected and hence are more vulnerable to the reduction in the vaccination rate.

Conclusions: At low vaccination rates, broader interventions are needed to control the outbreak. Identifying the 
cause of the decline in vaccination rates (e.g., low income) can help design targeted interventions which can dampen 
the disproportional impact on more vulnerable populations and reduce disparities in health. Per capita burden of the 
potential measles resurgence is equivalent in the rural and the urban communities and hence proportionally equita-
ble public health resources should be allocated to rural regions.

Keywords: MMR vaccination, Home isolation, Social network, Network epidemiology, Vulnerable populations, Health 
equity, Agent-based model, NIS
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Background
Severe symptoms and high transmissibility are well 
known characteristics of measles. Although measles is 
preventable by the measles, mumps, and rubella (MMR) 
vaccine, high level of immunization rate (more than 95%) 
is required to prevent outbreaks through herd immunity. 
Measles was declared eliminated from the US in 2000; 

however, due to increasing vaccine hesitancy, various 
states have seen measles outbreaks in the last two dec-
ades [1].

The 2019 measles outbreak in the US (the larg-
est one reported since 1994) constituted of imported 
cases, majority of which were unvaccinated US resident 
global travelers [2]; 85% of the cases occurred in close-
knit under-immunized communities [2]. In the light of 
increased mobility in this century, any under-immu-
nized region is at a risk of a measles outbreak due to case 
importation.
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During the COVID-19 pandemic, routine immuniza-
tions have reportedly decreased in various parts of the 
world, including in the USA [3–7]. Globally, over 27 
million children are estimated to have missed the first 
dose of the measles vaccine, just in 2020 [7]. With the 
decline in the routine immunizations, the end of social-
distancing and lockdown will likely result in a surge in 
highly contagious diseases like measles [8–11]. Our goal 
is to assess the effect of reduction in the MMR vaccina-
tion rates on the potential outbreak of measles in the 
post-lockdown COVID-19 era. Prior studies, such as 
[3–7], only focus on the reduction in coverage rates; dis-
ease transmission models are needed for estimating the 
risk of outbreaks. Gaythorpe et  al. [10] use a modeling 
approach to estimate the health impacts of 50% reduction 
in vaccination coverage in 2020 and delays in vaccination 
campaign in 10 countries, and report that there could be 
significant risk of measles in some countries. However, 
their models consider limited details of population mix-
ing, which makes it difficult to understand the impact of 
individual level contacts and behaviors, especially of chil-
dren in schools.

Along with individuals’ compliance to vaccination 
and distancing decisions, the course of an outbreak is 
impacted by the location of their residence. We use our 
model to analyze the differences in the likelihood and the 
burden of a Measles outbreak in the urban and the rural 
regions and discuss the implications.

In this research, we examine the risk of measles in 
a highly resolved agent-based model, which incorpo-
rates detailed contacts, including at schools. We study 
the impact of different levels of immunization reduc-
tion and seeding of the outbreak in rural versus urban 
regions, and observe the effect of location on outcome 
metrics. We simulate a variety of counterfactual scenar-
ios which consider different seeding locations, disease 

transmission levels, compliance to stay-home interven-
tion, spatial distribution of immunization rates, and 
various levels of reduction in MMR immunization rate. 
The results (1) show the effect of reduced immunization 
rates on measles’ incidence, (2) compare the outbreaks 
when the imported case is in a rural region versus urban 
region for various levels of reduction in the vaccination 
rate, (3) analyze the proportional impact on the rural and 
urban communities, (4) identify the communities that are 
disproportionately affected, and (5) assess the effect of 
interventions.

Methods
We simulate the transmission of measles in Virginia in 
two scenarios—(1) pre-COVID-19 (base-case scenario), 
and (2) post-lockdowns (i.e. after resuming social activi-
ties to pre-covid levels but reduced MMR immunization 
rate) to quantify the increased risk of measles resurgence 
post-COVID due to the decline in routine immuniza-
tions. The transmission process is characterized by an 
agent-based modeling framework implemented on a 
synthetic yet realistic activity-based social network (dis-
cussed below), which has been used in several modeling 
studies, such as [12–14]. The MMR vaccination status of 
the children in the synthetic population is determined 
from the school immunization data publicly available 
from the Virginia Department of Health. The vaccination 
status of adults is determined by the state-level immu-
nization rate available from the US Centers for Disease 
Control and Prevention (CDC). Figure  1 graphically 
shows the different components of the model and the 
methods and the flow of processes between them. In the 
following subsections we describe the process used for 
constructing the synthetic network, the datasets, and 
the procedure for assigning the immunization status to 

Fig. 1 Design and flow of the model. Summary of the design and the flow of the model. Green hexagon (source for synthetic population), orange 
hexagons (sources for activity-based contact network) and yellow hexagons (sources for MMR immunization rate) show select sources of input data
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individuals, the disease transmission model, the interven-
tions, and the experimental parameters.

Synthetic population and contact network
The social contact network of the Virginia population 
consists of more than 7.6 million nodes and 371.9 mil-
lion edges, and was developed using a “first principles" 
approach [12, 13, 15, 16]. The nodes represent synthetic 
individuals with respective households which are located 
geographically. Each node is endowed with features like 
age, race, gender, household size, household location, 
household income etc., as available in the US Census.

The synthetic population is created by integrating vari-
ous datasets from commercial and public sources into a 
common architecture for data exchange. Each synthetic 
individual is placed in a household with other synthetic 
people, and each household is located geographically 
in such a way that a census of the synthetic population 
yields results statistically indistinguishable from the orig-
inal census data, if they are both aggregated to the block 
group level [17, 18]. Further, counties of Virginia are des-
ignated as “urban” or “rural” based on the US Census 
Urban and Rural Classification [19].

Synthetic individuals are assigned daily activities using 
time-use surveys (American Time Use Survey data [20], 
National Household Travel Survey Data [21] and Mul-
tinational Time Use Study [22]), and then assigned a 
geo-location for each activity that each person per-
forms. The geo-locations are based on data from HERE/
NAVTEQ,1National Center for Education Statistics,2La
ndScan,3OpenStreetMap4 etc. Finally, a dynamic social 

bipartite visitation network is constructed when people 
visit locations to perform daily activities and come in 
physical contact with others at those locations. The colo-
cation based social contact network is used for the spread 
of disease transmission. For more details on the social 
network construction, see [12, 15, 17, 23].

Disease transmission model
We use an agent-based disease transmission model to 
simulate the spread of measles in the population. The 
model computes probabilistic disease transmission 
between individuals (nodes in the network) as well as 
keeps track of the disease progression and the different 
health states of each node, as shown in Fig. 2. The evo-
lution of the health state of any individual is assumed 
to follow a network-based SEIR (Susceptible-Exposed-
Infected-Recovered) model.

The simulation is initialized by (a) setting the health 
states of all the immunized nodes as “Vaccinated", (b) 
selecting a random node from age group 5–17  years as 
“Infected" (and infectious) to seed the epidemic, and (c) 
setting all other nodes as “Susceptible". We assume that 
the vaccine is perfect, and thus no vaccinated node con-
tracts the disease  [24]. The propensity of transmission, 
i.e., a susceptible node contracting the disease while in 
contact with (that is, sharing an edge with) an infectious 
node, is calculated by summing for all edges of the sus-
ceptible node, the product of the contact duration over 
a day (24  h), susceptibility ( σ ) of the susceptible node, 
infectivity ( ι ) of a contact node and transmissibility ( τ ) 
for each edge.

Thus, if the set of health states is χ = {Susceptible, 
Exposed, Infected, Recovered} , the associated suscep-
tibility and infectivity for a node P in the population 
is denoted by σP(X) and ιP(X) respectively for X ∈ χ . 
We assume that susceptibility of “Susceptible" health 

Fig. 2 Disease transmission flowchart. SEIR disease transmission model for measles. Only susceptible nodes can become exposed and infected. 
Exposed is the latent stage of Measles and Infected state comprises of the infectious period (presymptomatic incubation and rash)

1 http:// www. here. com
2 http:// www. nces. ed. gov
3 http:// lands can. ornl. gov
4 http:// www. opens treet map. org

http://www.here.com
http://www.nces.ed.gov
http://landscan.ornl.gov
http://www.openstreetmap.org
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state is 1, and 0 for all other health states and infectivity 
of “Infected" health state is 1, and 0 for all other health 
states ensuring that only infected nodes can transmit the 
disease to a susceptible node. The probability that a sus-
ceptible node P becomes exposed by contact with infec-
tious neighbors P’ is a function of the transmissibility τ 
and the contact duration. Notice that the Exposed state 
stands for the latent period and hence not infectious; the 
Infected state comprises of the pre-symptomatic and the 
rash period, and is infectious.

Between September 2018 to August 2019, the mea-
sles outbreak in New York city (NYC) led to a total of 
649 case counts [2]. Being the latest large outbreak with 
a population size close to Virginia’s, we chose the trans-
missibility ( τ ) value to be 0.5 which on an average, with 
one node initially infected between the ages 5–17 years, 
results in an outbreak of the size proportional to the one 
that occurred in NYC. Details of the calibration of the 
parameter τ are described in the Appendix.

Once a node becomes exposed, the disease progresses 
as follows. The maximum duration of the latency period 
is 9 days and follows the discrete probability distribution 
{0, 0, 0, 0, 0, 0.1, 0.2, 0.6, 1} of the health state of the node 
changing to infected. The infectious duration (includes 
the presymptomatic incubation and the rash periods) of 
each infected node is then determined by the discrete 

probability distribution {0, 0, 0, 0, 0, 0, 0.3, 0.7, 1} of the 
node getting recovered [25] as shown in Fig.  2. Note 
that, the cumulative probability distribution is reported 
as { p1, p2 . . . , pn }, where pi is the probability that i is the 
last day of latency and of infectiousness respectively; 
and a measles case will change state within n days. We 
assume that a recovered individual obtains permanent 
immunity against measles. This assumption is realistic for 
the scope of this paper since we simulate the transmis-
sion for a relatively short time duration (365  days). The 
disease progression related parameters used in the model 
are described in the Table 1.

In this study, we assume that over the year of simula-
tion there are no new infant nodes due to birth or nodes 
removed due to mortality.

MMR immunization rates
Children
Immunization rate for children (up to age 17) was calcu-
lated using middle school (6th grade) students’ and kin-
dergarten students’ immunization report for Fall 2018 
from the Virginia School Immunization Survey (SIS) 
which is publicly available at the Virginia Department 
of Health (VDH) website (https:// www. vdh. virgi nia. gov/ 
immun izati on/ sisre sults archi ved/) for public schools. All 

Table 1 Table of variables. Summary of the variables used in the experiments. †The cumulative probability distribution is reported as 
{ p1, p2 . . . , pn }, where pi is the probability that i  is the last day of latency or of infectiousness, and a measles case will change state within 
n days

Base case scenario

Variables Base case value Source

Population of Virginia 7,688,059 Synthetic populations [13]

Infected individuals at day 0 1 (5–17 years of age) Assumed

Proportion vaccinated 91.5% Calibrated using VDH school immunization data 
[26] and state-level immunization rate [27]

Transmissibility 0.5 Calibrated to generate an outbreak size of 650 [28]

Simulation duration 365 days Assumed

Home isolation compliance 90% [25]

CDF of the latency period distribution {0, 0, 0, 0, 0, 0.1, 0.2, 0.6, 1}† [25]

CDF of the infectious period distribution {0, 0,0, 0, 0, 0, 0.3, 0.7,1}† [25]

Experiments

Variables Set of values used 
in experiments

Transmissibility ( τ) {0.5, 0.6, 0.7, 0.8, 0.9}

Home isolation compliance {75, 80, 85, 90, 95}%

Home isolation initiation day {3, 4, 5, 6, 7}

Decline in immunization rate ( α) {0, 5, 10, 15, 20, 25}%

https://www.vdh.virginia.gov/immunization/sisresultsarchived/
https://www.vdh.virginia.gov/immunization/sisresultsarchived/
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schools for kindergarten level and schools with less than 
10 students for 6th grade level reported only the overall 
vaccination rate instead of MMR specific immunization 
rate [26]. We used MMR vaccination rate in the data 
whenever available and the overall rate otherwise.

The synthetic population network [13] has a record of 
all the schools included in the National Center for Educa-
tion Statistics database (Common Core Data5 for public 
schools). We assigned the SIS immunization rate for all 
the schools common to both SIS data and the synthetic 
population. Table 2 summarizes the assumptions used for 
assigning immunization rates to the schools in the syn-
thetic population that were missing in the SIS data. We 
use latitude and longitude to find the nearest school by 
Haversine distance measure. We assume that if a house-
hold has more than one child of age 14 or below, they 
all have the same immunization status. The assignment 
of immunization status is done using a binomial distri-
bution with probability equal to the associated school’s 
immunization rate (assumptions for different age groups 
shown in Table  2). The resulting childhood (ages under 
18  years) immunization rate for the Virginia popula-
tion network is 96.331% whereas the overall vaccination 
rate in the Virginia population is 91.496%. Figures in 
the Appendix show a county-wise spatial distribution of 
the immunization rates for the synthetic population in 
Virginia.

Adults
The National Immunization Survey reports the state 
level immunization rate of 19–35-month-olds for the 

years 1995 to 2017. Since the subjects in the reports from 
1995–2004 are adults in the current year (2021), we use a 
weighted average of the state level aggregated rates from 
these years [19, 29–38] (from the trend reports which are 
publicly available at the CDC’s ChildVaxView webpage6) 
to obtain the state level immunization rate to be 90.03%. 
We assign these immunization rates to the adults in the 
population (18 + years age) through uniformly sampling 
per census block group. The resultant overall vaccination 
rate of the synthetic population turns out to be 91.5% 
(i.e. adults and children) which is used in the base-case 
scenario.

Interventions
Due to high transmissibility, measles patients are rec-
ommended to isolate to prevent secondary infections. 
Therefore, in our simulations, the intervention applied to 
infectious individuals is home isolation. We assume that, 
in the base case, 90% of the individuals entering “infec-
tious" class are compliant to home isolation directive 
[25].

Since the measles’ rash starts around 3–5 days after the 
non-specific symptoms of fever and cough, we assume 
that infectious individuals begin home-isolation three 
days after entering the infectious state (to account for 
delay in getting a diagnosis and severe symptoms) and 
continue home isolation for the rest of their infection 
duration.

Home isolation is implemented in our simulations in 
the following manner. At the end of every time step (a 
day), out of the new “infected" nodes, 90% (referred to as 

Table 2 Immunization rate assumptions. Assumptions for assigning immunization rates to schools and individuals

School

For schools in synthetic population Assumption of immunization rate

Both 6th grade and kindergarten rates available Use the corresponding immunization rates

Kindergarten rate not available Use the kindergarten rate of the nearest school

6th grade rate not available Use the 6th grade rate of the nearest school

Neither available Use the available corresponding rate of the nearest school

Individuals

Age Immunization rate assumption

Up to 11 years Use the associated school’s kindergarten immunization rate

12 – 17 years Use the associated school’s 6th grade immunization rate

18 years and above Use the average state level immunization rate for the years 1995 to 2004

5 https:// nces. ed. gov/ ccd/
6 https:// www. cdc. gov/ vacci nes/ imz- manag ers/ cover age/ child vaxvi ew/ data- 
repor ts/ mmr/ trend/ index. html

https://nces.ed.gov/ccd/
https://www.cdc.gov/vaccines/imz-managers/coverage/childvaxview/data-reports/mmr/trend/index.html
https://www.cdc.gov/vaccines/imz-managers/coverage/childvaxview/data-reports/mmr/trend/index.html
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home isolation compliance rate) are randomly selected 
to initiate home isolation on the third day since becom-
ing “infected" by deactivating all their non-home edges 
in the network. That is, isolating individuals will not con-
tact any individuals other than their household members. 
Non-home edges are reactivated after the isolating node 
has recovered to indicate that the activities of that indi-
vidual have resumed.

Simulations
We use a tool called EpiHiper [16] to simulate the spread 
of measles under various scenarios over the social net-
work of Virginia. It is implemented in C +  + /MPI and 
is scalable to millions of agents via its parallel algorithm, 
which enables scaling on distributed memory systems 
[16]. EpiHiper is a network-based epidemiological model 
designed to study the impact of individual behavior and 
public health policies on the spread of infectious dis-
eases. Similar methods have been successfully used to 
study COVID-19 and Influenza and are discussed in 
detail in [14, 39–41].

Each simulation begins with one random infected 
node of age 5–17  years and is run for 365 time-steps 
(365  days). For the base case scenario, we assume that 
the transmissibility is 0.5, the home isolation compliance 
rate is 90% [25] and the home-isolation is initiated three 
days after entering infectious state. We study two types 
of outcomes: (a) the expected number and distribution of 
cases (since there is significant variance in the number of 
cases), and (b) the probability of having a large outbreak. 
The latter is important, since the expected number of 
cases is a small fraction due to the relatively high immu-
nization rates in the population, and the high variance in 
simulation outcomes. We note that computing the prob-
ability of large outbreaks is a rare event, and requires a 
very large number of simulations to estimate well, which 
is a novel aspect of our study. Table 1 lists all the variables 
and their corresponding values used in the experiments. 
The hardware and software requirements for conducting 
all the simulations are listed in the Appendix.

Effect of lockdown
Rate of routine immunizations is believed to have 
dropped by as much as 40% in some states in the US 
during COVID-19 era [5]. Now with the end of the 
lockdown, an increase in social activities could result 
in a higher spread of infectious diseases if immuniza-
tion rates continue to stay low. To assess the effect of a 
reduced MMR vaccination rate during the pandemic 
[42] on measles resurgence, we model the decline in the 
MMR rate in the population that is 12 years or younger, 

by a parameter α which is chosen to be in the range of 5% 
to 25%. These nodes are selected (a) uniformly randomly 
throughout the network, referred to as the uniform sce-
nario, and (b) (inversely) weighted by their per capita 
household income (to capture the impact on low-income 
and vulnerable population), referred to as the weighted 
scenario. Note that the former scenario assumes the 
decline in vaccination to be proportional to the popula-
tion density whereas the latter assumes the decline to be 
negatively correlated to household income to capture the 
lack of access to health care services for the lower income 
households.

The resulting immunization rate distributions for 
the post-COVID scenarios, i.e. for α > 0 both uniform 
and weighted, are shown by county in figures in the 
Appendix.

Effect of the rural–urban divide
In Virginia, there are approximately thrice as many indi-
viduals residing in the urban counties as in rural counties, 
and urban residents have, on average, about 1.5 times 
the per capita household income of the rural residents. 
We study the distributions of the outbreak size when the 
source of the outbreak is in an urban county versus in a 
rural county. We analyze the differences in the distribu-
tions for various values of α (decrease in immunization 
rate) in the two types of regions.

Effect of interventions
The goal of public health interventions is to prevent the 
spread of the disease. Since the exact values for home-
isolation compliance rate, initiation of home-isolation 
and transmissibility are unknown, we analyze the sensi-
tivity of our outcomes to these parameters. Specifically, 
we analyze the risk of measles outbreak if.

1. the transmissibility varies between 0.5–0.9.
2. the rate of compliance to home isolation varies 

between 75–95%.
3. the delay in initiation of home isolation varies 

between 3–7 days.

Vulnerable population groups
We define vulnerability as the risk of getting infected in 
the simulations. To identify groups of people who may 
be more vulnerable to measles, and disproportionately so 
than the rest of the population, we chart the distributions 
of the proportion of infected population by race, age 
group, ethnicity, household size and household income. 
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Since none of the distributions are normal, we choose to 
perform a non-parametric Wilcoxon’s Signed Rank Test 
to see which groups of people (variables) are significantly 
more or less vulnerable to measles in three scenarios: the 
base case and the cases of 25% (uniform and weighted) 
decline in childhood MMR immunization rate.

To quantify the magnitude of the effect of the vari-
ables on vulnerability, through the Wilcoxon test, we 
calculate the effect size corresponding to each vari-
able tested by dividing the absolute (positive) stand-
ardized test statistic z by the square root of the sample 
size. Based on Cohen’s classification for effect sizes 
[43], we assume a value around 0.2 denotes small 
effect, around 0.5 a medium effect and around 0.8 a 
large effect [44].

Results
Figure 3 presents the outcomes for the varying immu-
nization rate scenarios in comparison to the base-case 
scenario ( α = 0 ). Figure  4 shows the distribution of 
infected cases between rural and urban counties, for 
the low immunization settings ( α ∈ {5, 10, 15, 20, 25} ), 

for fixed values for the parameters of transmissibil-
ity (0.5), home isolation compliance rate (90%) and the 
day of initiating home isolation (3) in the base case. We 
present a detailed sensitivity analysis of our simulation 
model in Fig. 5 by varying the parameters one at a time 
in the base-case scenario. Figure 6 represents the trade-
off between the vaccine levels and the compliance rate 
of home isolation intervention.

Post‑lockdown measles resurgence
While in the base case scenario ( α = 0 ), the simulations 
produce an outbreak of size of a couple of hundred case 
counts, Fig. 3 shows the impact on the threat of measles 
outbreak due to the reduced immunization rates in the 
following two scenarios:

1. Decrease in vaccination rate ( α ) is uniformly distrib-
uted across Virginia (the uniform scenario).

2. Decrease in vaccination rate ( α ) is correlated to the 
child’s household’ per capita income (the weighted 
scenario). This assumes that access to health clinics is 
inversely proportional to the child’s economic condi-
tions.

Fig. 3 Post-lockdown measles threat. Post-lockdown measles threat as a function of decline in childhood MMR immunization: effect of varying α 
on the distribution of outbreak on a logarithmic scale, (bottom) the probability of outbreak size bigger than a value κ (in the range of 100 to 1000 
where κ = 650 represents the probability of outbreak bigger than that of NYC’s). α = 0 indicates the base-case scenario
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The outbreak size grows as the immunization rate 
decreases in both cases, seemingly exponentially, after a 
threshold value for α . Notice that for α ≥ 15% , the aver-
age outbreak size increases by many orders of magnitude 
in both the uniform and weighted scenarios. Figure 3 also 
shows the probability of having an outbreak larger than 
the size of the NYC outbreak, i.e., more than 650 infec-
tions, under various levels of α.

Urban–rural divide
As seen from Fig.  4, in high vaccination settings (i.e., 
lower α ), an infection initiated in either a rural or an 
urban county will lead to equivalent outbreak sizes. In 
low vaccination settings (i.e., higher α ), note that the case 
counts in urban population is significantly higher than 
the rural counterparts (top row in Fig.  4). The propor-
tion of the respective population getting infected shows 
an insignificant difference (bottom row in Fig. 4), but the 

variance is much larger in the rural regions. Note that the 
median outbreak size in urban regions increases steeply 
when α is between 10 and 15% and the decline in the 
immunization rate is uniformly distributed.

Effect of intervention and uncertainty in variables
Figure  5 shows (1) the average change in the outbreak 
size when transmissibility, compliance to home-isolation 
and the day home-isolation is initiated, are varied, and 
(2) the probability of the measles outbreak being bigger 
than κ case counts, where κ is in the range of 100 to 1000 
and κ ≥ 650 represents the case when the size of the out-
break is bigger than the one that occurred in NYC.

On average, the total incidence does not demonstrate 
significant sensitivity to compliance to home-isolation, its 
initiation day, or the transmissibility. In fact, compliance 
to home-isolation has the least effect on the incidence. 
Based on Fig. 5, the following conclusions can be drawn:

Fig. 4 Urban–rural divide. (Left) Uniform, (Right) Weighted, (Top) Logarithm of case counts, (Bottom) Proportion of case counts in rural (out of 
1,901,192 individuals) and urban (5,786,867 individuals) regions, respectively
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Transmissibility
As the value of τ increases beyond 0.5 there is an approx-
imately linear increase in the risk of an outbreak of size 
bigger than 650, although notice that the increase in the 
risk is the steepest for τ between 0.6 and 0.7.

Home isolation compliance
Increasing home isolation compliance up to 95% does not 
decrease the chance of an outbreak having more than 650 
case counts by much, only about 2%.

Fig. 5 Effect of varying parameters. Effect of varying transmissibility, home isolation compliance rate and the day of initiation of home isolation 
since becoming infectious in the base case scenario on (left, logarithmic scale) the average measles outbreak size in Virginia, and (right) the 
probability that the measles outbreak will be bigger than κ (with κ in the range of 100 to 1000). The line for κ = 650 represents the probability of 
outbreak bigger than that of NYC’s
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Home isolation initiation day
Delaying the home isolation initiation by an additional 
day increases the chance of an outbreak that is bigger 
than 650 case counts, but it peaks by day 6.

Plots for each of the parameters in Fig.  5 show that 
the probability of large outbreaks start to converge for 
outbreak size of 400 or more (i.e. κ ≥ 400.)

Trade‑off between vaccination rates and the effect of home 
isolation
Figure  6 shows the effect of varying the home-isola-
tion compliance rates in different immunization set-
tings on the probability of an outbreak size bigger than 
650 (size of the NYC outbreak). The magnitude of the 
effect of the home isolation is very small compared 
to the impact of decreasing vaccination rates in the 
population.

Vulnerable population groups
Figure 7 displays the results of Wilcoxon’s Signed Rank 
Test which compares the vulnerability of the popula-
tion to measles by race and by age groups with statis-
tical significance level assumed at 0.05. It shows that 
the White population is always significantly less vul-
nerable to measles i.e. they are proportionally less rep-
resented in the case counts. However, for the African 
American, Pacific Islander (includes Native Hawai-
ian) and the Native American population, the inci-
dence level depends on the immunization level in the 

population as well as the distribution of the reduction 
in the immunization rate. In low immunization set-
tings, children under the age of 5 years are found to be 
significantly more vulnerable to infection as compared 
to the base case. Hispanic population is more vulner-
able than the non-Hispanic population in both base-
case and low-immunization rate scenarios; however, 
the effect size is lower in the uniform case than the 
weighted case and the base-case scenarios.

Households with sizes greater than 3 are consistently 
disproportionately vulnerable to measles, and they are 
especially at a higher risk in low immunization set-
tings. Household size of 4 turns out to be a thresh-
old for the switch in vulnerability. The test results for 
household income reflect the effect of the difference 
in the assumptions for the uniform and the weighted 
decline in immunization rate.

Discussion
In the past, studies have tried to estimate the impact 
of reduction in vaccination rate [10, 45], clusters of 
unvaccinated individuals [25], home isolation interven-
tions [46] and speed of public health response [47] on 
measles outbreak and its prevention and control. Gay-
thorpe et  al. [10] study the impact of disruptions due 
to COVID-19 on the increased risk of measles. How-
ever, these studies, when not based on mean-field mod-
els, have been performed on stylized networks, which 
do not consider detailed mixing patterns, especially in 
schools. In this study, we apply the disease transmis-
sion dynamics on a realistic and dynamic social contact 
network to analyze the threat of declining MMR vac-
cination rate on the measles outbreak. Novel aspects 
of our study are the highly resolved representation of 
school level contacts, diverse kinds of scenarios for 
reduction in vaccination rates, and the use of a high-
performance-computing based simulation tool, which 
enables analysis of the variance and probability of large 
outbreaks.

In the post-lockdown era, the threat of measles resur-
gence is real as the schools and businesses reopen, while 
individuals are not caught up on their routine MMR 
immunization [3, 48]. The recent tragic measles outbreak 
in Afghanistan makes us wary of the risks of sub-par 
MMR immunization rates [49]. In 2017, Lo and Hotez 
showed that a 5% decrease in MMR vaccination resulted 
in a threefold increase in the number of cases [45]. Our 
results show that the decrease in vaccination rate (α) 
has a highly non-linear effect on the number of mea-
sles cases: a 5% decrease in vaccination rate results in a 
twofold increase in measles cases when the drop in the 

Fig. 6 Effect of intervention in post-COVID scenarios. Probability 
that the measles outbreak will be bigger than NYC’s for varying 
α (reduction in childhood MMR rate; solid lines are for uniform 
and dashed for weighted α) for different rates of home isolation 
compliance. α = 0 indicates the base-case scenario
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vaccination rate is concentrated in low-income house-
holds. When the decline in vaccination rate is 10%, we 
observe a more than tenfold increase in the weighted case 
but not so much in the uniform case. However in both 
scenarios this impact grows exponentially with addi-
tional decline in the vaccination rate. Note that reduced 
vaccination is evenly distributed in the uniform case but 

more spatially concentrated in low-income regions in the 
weighted case. At very low levels of RI, this difference has 
a small impact on the disease outcomes but at α = 10, this 
difference becomes significant. It is likely because spatial 
clusters of unvaccinated individuals cause a larger out-
break in the weighted scenario compared to the uniform 
scenario. At α >  = 15, the probability of outbreak becomes 

Fig. 7 Vulnerability to measles by demographics. The figures show the results of the calculated effect size (d) through the Wilcoxon test. Values of d 
close to zero imply that the variable’s likelihood of measles burden is the least disproportionate in the population; values around 0.2 denotes small 
effect, around 0.5 a medium effect and around 0.8 a large effect [43, 44]. *: p < 0.05, **: p < 0.01, ***: p < 0.001
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almost equally high in both scenarios, likely because the 
absolute number of unvaccinated is high enough in both 
cases to easily cause a large outbreak. Overall, a larger α 
translates into a larger risk under the weighted scenario 
compared to the uniform scenario. Please see Fig. 8a-d in 
Appendix corresponding to α = 10.

Additionally, the probability of having more than 1000 
case counts also increases exponentially with α . In sum-
mary, as α increases, the probability of a large outbreak 
with a single case importation becomes large, no matter 
where the reduced immunizations occur.

Based on the assumptions in the pre-COVID setting 
(base case), in our model, the resulting childhood MMR 
immunization rate for Virginia is 96.331% which is within 
the reported range for Virginia by the CDC  [50]. The 
lockdowns and crises due to COVID-19 pandemic has 
resulted in the decline of routine immunization rates. 
The drop in children’s MMR vaccination rates is reported 
to be as high as 50% in some states neighboring Vir-
ginia, while the data for Virginia was unavailable [51] at 
the time of drafting this paper. We find that a decline in 
vaccination rate beyond 15% in Virginia will increase the 
potential for a measles outbreak by orders of magnitude 
(Fig. 3).

In the base-case scenario, that is pre-COVID vaccina-
tion rates, although on an average it does not seem like 
the effect of interventions makes a significant difference, 
we show that an additional day’s delay in initiation of 
home isolation increases the chance of an outbreak being 
bigger than NYC’s outbreak by about 5% (Fig. 5). Inter-
ventions that reduce the effective transmissibility beyond 
a threshold (0.7 in our case), will effectively decrease the 
risk of a large outbreak by as much as 10%. However, sim-
ilar to the findings in [25], we find that in low immuniza-
tion settings (more than 15% drop in the vaccination rate 
compared to the base case), interventions such as faster 
and higher compliance to home isolation will not be able 
to compensate for the risk of outbreak caused by the low 
vaccination coverage (Fig. 6).

The observation that increasing compliance to home 
isolation from 75 to 95% does not make a significant dif-
ference (only about 2%) in the probability of a large out-
break (Fig. 5) may be attributed to no change in behavior 
of the household members of the isolating individual, and 
to the transmission during the presymptomatic infec-
tious period before isolation is initiated. Therefore, home 
quarantine for the contacts of the diagnosed individual, 
especially for the household members, is recommended 
for a higher effectiveness of the intervention.

Our results show that the potential size of an outbreak 
is similar whether the disease originates in a rural or an 

urban county when the vaccination rate is sufficiently 
high. This may be concerning to the public health offi-
cials since rural regions are typically not as well equipped 
with healthcare resources as the urban ones are if the 
spread is spatially concentrated. This is another reason 
for addressing disparities in access-to-healthcare in the 
rural regions.

Average outbreak size from a seed in a rural county is 
significantly smaller than the one caused by a seed in an 
urban county in the post-lockdown low-vaccination sce-
nario. This may be due to the lower population density 
and mixing of the residents in the rural community as 
compared to the urban counterparts. However, the pro-
portion of the rural and the urban communities getting 
infected is remarkably similar (Fig. 4); emphasizing that 
even if the absolute case counts are different, the propor-
tional disease burden is similar. Therefore, proportional 
public health resources must be ensured which will be 
essential to the preparedness objective of World Health 
Organization’s strategic response plan for the upcoming 
decade [52]. In low vaccination rate settings, children 
under the age of 5 tend to be disproportionately infected. 
Since children are eligible for the second MMR dose 
only after the age of 4 years, this age group is particularly 
vulnerable.

Furthermore, to prepare, predict and prioritize the tar-
gets of interventions accurately, one must understand the 
causes of the decline in the immunization and identify the 
communities most vulnerable to the outbreak (top row of 
Fig. 4 shows difference in the rate of change of the order 
of magnitude of the outbreak size with the weighted and 
the uniform decrease in immunization). We see threshold 
behavior with the threshold values being different for the 
urban and the rural regions. Whether or not the African 
American population and the Native American popula-
tion will be more vulnerable depends on the distribution 
of the decline of the vaccination rate (Fig. 7).

Limitations
Most papers only study the measles transmission dynam-
ics for the children (below 18  years of age); however, 
we chose to model unvaccinated adults too due to their 
contribution to the case counts in the NYC outbreak [2]. 
The following are some of the limitations of the work. 
We assume that the vaccine is perfect. Some studies 
have reported vaccinated individuals contracting mea-
sles [53–55], however most such cases are mild and have 
very few to no secondary infections [24]. The adults’ 
immunization rate estimate, due to lack of better avail-
able data, does not incorporate the migration of adults 
and hence may not be accurate. Nevertheless, migration 
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of either vaccinated or unvaccinated adults in majority 
is unlikely. Additionally, per the resultant immunization 
rate in the synthetic population, children have a higher 
immunization rate (96%) compared to adults (90%) in our 
model which would cause transmission to occur more 
in adults. Our usage of the term “outbreak size” refers to 
the cumulative incidence within the one year of simula-
tion, irrespective of whether the outbreak ended within 
the year or not since we aimed at measuring the risk over 
a limited period. Our model assumes that individuals in 
the post-lockdown era will resume activities at pre-covid 
levels which may not be true since work-related mobility 
and travel patterns may have been permanently altered.

There are many directions this work can be extended 
to. The model can be extended by incorporating other 
public health interventions like post-exposure prophy-
laxis and home quarantine through contact-tracing 
[56] and school closures [57]. It could also be extended 
to study the spread of measles in other states in the 
US or even at the national level. A look into the effect 
of delayed immunization campaigns over a longer time 
horizon as in [10, 58] would be insightful in quantifying 
and optimizing the economic burden. A positive birth 
rate, that dynamically adds to the susceptible pool, could 
be modeled to assess the implicit effect of spatial and 
demographic differences in birth rate on the likelihood 
of incidence of Measles.

Conclusions
This research shows that as the immunization rate 
decreases, the probability of a large outbreak caused by 
a single case importation increases. In fact, the effect of 
the decline in immunization rate has a non-linear effect 
on the number of cases, and there exists a threshold 
beyond which the effect is exponential. In high-immu-
nization settings, early interventions and home isola-
tion strategies that reduce the transmission decrease the 
chances of a large outbreak. However, in low immuniza-
tion settings, like the one in post-COVID-19 era when 
there is a drastic drop in the vaccination rate among 
children, isolation strategies (resulting in a reduction 
in transmissibility) are not enough to control the out-
break. A larger compliance to interventions or prompt 
action in terms of isolation are not sufficient to counter 
the effects of the additional drop in the vaccination rate. 
Identifying the cause of the decline in vaccination rates 
(e.g., low income) can help design targeted interventions 
which can dampen the disproportional impact on more 
vulnerable populations. Public health campaigns to raise 
awareness about the risks of measles and its prevention 

through vaccination can be a crucial tool in maintain-
ing high rates of MMR vaccination. Engaging commu-
nity leaders who can spread the message and arranging 
mobile vaccination clinics in low-income communities 
to provide easy access to care can also help in improving 
vaccination rates. This study also emphasizes the need 
for proportionally equitable public health resources 
in rural regions given that the per capita burden from 
reduced immunization is expected to be similar in rural 
and urban regions.

Appendix
HPC (high performance computing) requirements 
and usage

• Cluster used: Rivanna HPC Facility at University of 
Virginia

• Experiments run: 53
• Replicates per experiment: 300 (therefore: 15,900 

simulations in total)
• Input

– Static social network (synthetic population) data: 
712 M

– Dynamic contact network: 24G

• Output

– Raw output (per simulation): 150 M—180 M
– Output Summary (per simulation): 90 K—110 K

• Hardware

– Launching static social network on a server: 375G 
(for a period of 48 h at a time, over 40 CPUs)

– Resident set size (per simulation): 7G
– Disk read/write size (per simulation): 2.5 M
– CPU time used (per simulation, per 20 nodes): 1 h 

to 4.25 h

Remark: Due to a relatively sparse number of cases in 
base care scenario outbreak leading to the high variabil-
ity, the choice of at least 300 replicates is validated by the 
intuitive monotonic trend of average outbreak sizes upon 
varying different parameters.

Weighted and uniform immunization maps
See Fig. 8.
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Fig. 8 Decline in MMR rates. Spatial (county-wise) distribution of MMR immunization rates in the (a) base case ( α = 0 ); (b) post-COVID 
scenarios ( α = 10, 15, 25 ) when the decline in the immunization is random uniformly distributed over the population; (c) post-COVID scenarios 
( α = 10, 15, 25 ) when the decline in the immunization is random uniformly distributed over the population when it is correlated with the 
household income (“weighted”); (d) the difference in the two types of distributions by county
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Fig. 8 continued
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Calibration of the transmissibility parameter ( τ)
Being the latest large outbreak with available data, we use 
the 2018–2019 measles outbreak data for New York city 
(NYC) to calibrate the transmissibility parameter τ . We 
scale the monthly new cases to be proportional to  
the population size of Virginia (that is, #cases(VA) ≈

#cases(NYC)
populationsize(NYC)

• populationsize(VA) ). We perform a 
parameter sweep on the values of τ from 0.05 to 0.9 and 
obtain that for 300 replicates, τ = 0.5 assumption results 
in the adjusted monthly cases to fall with one standard 
error of the simulation outcome.
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