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Abstract 

Mathematical modelling of (re)emerging infectious respiratory diseases among humans poses multiple challenges 
for modellers, which can arise as a result of limited data and surveillance, uncertainty in the natural history of the dis‑
ease, as well as public health and individual responses to outbreaks. Here, we propose a COVID‑19‑inspired health 
state diagram (HSD) to serve as a foundational framework for conceptualising the modelling process for (re)emerg‑
ing respiratory diseases, and public health responses, in the early stages of their emergence. The HSD aims to serve 
as a starting point for reflection on the structure and parameterisation of a transmission model to assess the impact 
of the (re)emerging disease and the capacity of public health interventions to control transmission. We also explore 
the adaptability of the HSD to different (re)emerging diseases using the characteristics of three respiratory diseases 
of historical public health importance. We outline key questions to contemplate when applying and adapting this 
HSD to (re)emerging infectious diseases and provide reflections on adapting the framework for public health‑related 
interventions.
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Background
One of the challenges arising from the recent COVID-
19 pandemic was the need for the rapid development of 
mathematical models, many of which were developed 
within academic institutions, some in collaboration with 
public health organisations. The evolution of knowledge 
regarding the epidemiology and biology of COVID-19 
necessitated the simultaneous adjustment of the models 
to produce realistic and relevant results (e.g. contribution 
of asymptomatic transmission). This required ongoing 
collaboration with subject matter experts to appropri-
ately modify models based on the disease biology, as well 
as the public health measures that were implemented to 
control transmission [1–5]. Without biological reality, 
modelling can produce results that can range across a 

*Correspondence:
Valerie Hongoh
valerie.hongoh@phac‑aspc.gc.ca
1 Department of Biology, Carleton University, 1125 Colonel By Drive, 
Ottawa, ON K1S 5B6, Canada
2 Ottawa Research and Development Centre, Agriculture and Agri‑Food 
Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
3 Public Health Risk Sciences Division, Scientific Operations and Response, 
National Microbiology Laboratory Branch, Public Health Agency 
of Canada, 3200 Rue Sicotte, C.P. 5000, Saint‑Hyacinthe, QC J2S 2M2, 
Canada
4 Groupe de Recherche en Épidémiologie des Zoonoses et Santé 
Publique, Faculté de Médecine Vétérinaire, Université de Montréal, 3190 
Rue Sicotte, Saint‑Hyacinthe, QC J2S 2M1, Canada

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-024-10017-8&domain=pdf


Page 2 of 8Avramov et al. BMC Infectious Diseases         (2024) 24:1198 

spectrum of accuracy from good to inaccurate which may 
lead to criticism, justified or not, of modelling as a source 
of support for public health decisions [6].

When an infectious disease (re)emerges in a popula-
tion, the first priority for scenario-type modelling is to 
estimate the potential burden (e.g. number of cases, hos-
pitalisations, and deaths) on the population and assess 
the effect of control measures that can be used to reduce 
the impact of the disease. To guide the development of 
(re)emerging infectious disease models that are realistic 
from both biological and public health perspectives, we 
developed a health state diagram (HSD) to allow map-
ping of sequential infection and disease states as the 
causal pathogen spreads in the population. The HSD 
applies to both compartmental and agent-based model 
types and allows the assessment of the impacts of public 
health measures on transmission to control an epidemic. 
It lays out the processes involved in pathogen transmis-
sion and progression of infection that are common to 
respiratory infections and allows the incorporation of 
public health responses that can be explored in such sce-
narios. Consequently, when used with disease- and inter-
vention-specific components, the HSD can act as a guide 
for modellers on model construction, not only in terms of 
model development but also to allow experts with whom 
they may need to collaborate with to adequately param-
eterise the models as scientific evidence grows [5]. In this 
article, we explore the utility of the COVID-19-inspired 
HSD both as a starting point for reflecting on evolving 
knowledge of a (re)emerging respiratory pathogen and in 
evaluating the feasibility of potential control measures. 
We also discuss important considerations in refining the 
HSD as knowledge and control measures evolve.

Proposed health state diagram and initial considerations
At the onset of the COVID-19 pandemic, the Pub-
lic Health Agency of Canada developed several mod-
els including compartment and agent-based models, to 
evaluate the impact of nonpharmaceutical interventions 
(NPIs) on epidemic progression [1, 2]. First inspired by a 
generic influenza transmission model [7], the COVID-19 
agent-based model rapidly evolved to include additional 
disease states as their importance became apparent (e.g. 
the pre- and asymptomatic states and varying severi-
ties of disease manifestation by age group) as well as 
approximation of age-structured population mixing 
in representative households, mixed-age venues, and 
schools using contact matrices [1, 2, 8]. The COVID-19 
pandemic provided invaluable insights into the utility 
of mathematical modelling and highlighted the need for 
readily adaptable disease models. Transmission mod-
els used at the beginning of the pandemic were simple 

(e.g. Susceptible-Exposed-Infectious-Recovered model), 
when the importance of additional key states was not yet 
known. Here we propose a slightly more complex HSD 
(Fig.  1) that captures the early transmission dynamics 
of a (re)emerging disease. The HSD is based on the first 
year of the COVID-19 pandemic, before vaccination 
became available, and comprises the states of infection 
that are common for almost every infectious disease. 
As a disease (re)emerges in a population, it spreads 
through susceptible individuals. Exposed individuals – 
those that had effective contact with infected individuals 
– become infectious following a latent period and may 
develop symptoms (symptomatic) following an incuba-
tion period (depending on the disease, the latent period 
may be shorter or the same duration as the incubation 
period). Infected individuals may experience symptomatic 
or asymptomatic forms of infection. Symptomatic cases 
can range from mild symptoms (e.g. in the case of a flu, 
runny nose) to more severe symptoms requiring hospi-
talisation. Mild cases (here, encompasses both mild and 
moderate cases, but combined into a single state for sim-
plicity) recover on their own, while severely symptomatic 
cases will require hospitalisation with the most severe 
requiring treatment in intensive care units (ICU). The 
outcomes of more severe cases can be either recovery or 
death. In diseases without life-long immunity, a return 
to susceptibility may follow after a certain length of time 
recovered. Most, if not all, of these states occur for all 
respiratory infectious diseases, but diseases differ in the 
details – the rate of infection, the duration of the latent, 
asymptomatic, symptomatic, and infectious periods, the 
proportion of asymptomatic infections, the infection-
hospitalisation, infection-ICU utilisation and infection-
fatality rates, and details of the strength and duration of 
post-infection immunity.

The HSD delineates both visible and non-visible states 
that can occur as disease transmission unfolds in a pop-
ulation. Observable (visible) states serve as empirical 
benchmarks aiding in model validation and parameter 
inference, where simulations can be aligned with data 
[9, 10]. Conversely, non-visible states, such as asympto-
matic and pre-symptomatic states, have not always been 
included in past models, perhaps due to a presumed neg-
ligible contribution to transmission dynamics or consid-
ered non-relevant to the modelling objective [11]. We 
suggest early consideration of non-visible states when 
constructing new models for a (re)emerging disease 
to encourage reflection on where public health inter-
ventions should be applied for effective containment 
[12–15].

While symptomatic states are generally visible early 
on during a pandemic, severe cases are more likely to 
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be detected, especially in hospital settings, isolated and 
their contacts traced and quarantined by public health 
organisations [16]. The proportions of severe manifes-
tations (actual and model-predicted) are essential for 

public health experts in determining the potential impact 
on the public and healthcare capacity. Higher sever-
ity, or virulence, may mean a greater impact on health-
care, but when coupled with lower transmissibility may 

Fig. 1 Health state diagram for respiratory infectious disease modelling. A health state diagram with 14 states: an initial susceptible state prior 
to exposure to infection, an exposed state once successful transmission occurs, a pre-symptomatic state where an individual is infected but not yet 
symptomatic, multiple forms of infectious states ranging from asymptomatic, mild (including moderate), severe, hospitalised, requiring intensive 
care unit (ICU) care, followed by post‑infection states including recovered (and potentially immune) or dead individuals (and thus removed). Disease 
state transition times (denoted by the temporal parameters) are disease‑specific. The dashed box depicts the states where disease occurrences are 
typically identified within the population (e.g. symptomatic and hospitalised states). The hospitalised and ICU states enclosed within the dotted‑line 
box may be infectious but are assumed to be isolated and thus not contributing to community transmission in this HSD
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also mean that a larger proportion of cases are detected, 
isolated and for whom contacts are traced [17]. Early 
estimation at local, regional, or national scales, of the 
proportion of individuals, by age or vulnerability status, 
likely to develop severe outcomes and necessitate access 
to healthcare infrastructure, enables models to bet-
ter project healthcare needs for both resource planning 
and decisions on public health measures. In the case of 
COVID-19, early studies from cases in Asia, and China 
in particular, were instrumental in estimating key param-
eters used for modelling [17–19].

Waning of immunity, the existence of which was not 
confirmed in the early phase of the COVID-19 pandemic, 
is included in our proposed HSD given the importance 
this played as the pandemic persisted even after vac-
cines became available [20–22]. Its potential existence 
in a newly (re)emerging disease should be considered in 
terms of available public health control measures and 
assessing the potential effectiveness these can have in 
controlling an outbreak over time.

Although some public health measures may seem irrel-
evant for certain modelling objectives, their inclusion 

should still be considered as they will have an impact 
on pathogen transmission dynamics (Table  1). Non-
pharmaceutical public health measures can include case 
detection and isolation, contact tracing and quaran-
tine, masking and physical distancing and, in extreme 
cases, lockdowns. Depending on test sensitivity and 
the strength of surveillance mechanisms in place, case 
detection may occur at different stages within the HSD. 
Case detection can enable isolation, contact tracing and 
quarantine of potentially infected contacts. Measures 
to reduce the probability of transmission to susceptible 
individuals upon contact with an infectious individual, 
such as physical distancing and masking, can be imple-
mented on individuals in various states within the HSD. 
Pharmaceutical interventions include vaccines and ther-
apeutics. Vaccines (which are unlikely to be available at 
the start of a pandemic) may help in reducing the prob-
ability of infection, developing symptoms, or developing 
severe symptoms, depending on the nature of the vac-
cine, and may therefore impact individuals in multiple 
states throughout the HSD. Therapeutics such as anti-
virals (if available and effective), which aim to limit the 

Table 1 Potential public health measures available for control of (re)emerging infectious diseases

For each public health measure, we describe the general mechanism in which the measures can affect the course of infection in the health state diagram

Public health measure Description

Case detection Identifies infected individuals often via clinician diagnosis and/or laboratory diagnostic test. Depending on the disease 
and available tests, case detection generally occurs once symptoms appear, (e.g. starting from infectious mild or infectious 
severe symptomatic states) but with an extensive surveillance system and appropriate tests, case detection can occur 
before symptoms present (e.g. infectious pre-symptomatic and infectious asymptomatic states) [23]. Case detection can be 
followed by isolating infected individuals to prevent further transmission (next public health measure).

Isolation Prevents the spread of the disease from detected cases to susceptible individuals. It implicates any infectious health state 
by isolating individuals who can transmit the disease, yet do not need hospitalisation. Occurs following diagnosis [24].

Contact tracing Identifies contacts of known cases. It implicates individuals of any stage between the exposed and infectious states, 
but ideally before they become infectious (i.e., while in the exposed state, or susceptible state when no effective contact 
was ultimately made [25]. Contact tracing is followed by quarantining of contacts to prevent further transmission (next 
public health measure).

Quarantine Isolates individuals who were identified as a contact (i.e. may have been exposed to an infected person). It implicates any 
stage between the susceptible and infectious states, by isolating susceptible individuals or infectious individuals who can 
or will potentially transmit the disease [24]. Generally occurs following contact tracing.

Masking Reduces the likelihood of transmission from infectious individuals (infectious individuals spreading infectious droplets) 
and the likelihood of susceptible individuals becoming infected (susceptible individuals inhaling infectious droplets). Similar 
to physical distancing, masks can affect all infectious states and can be a protective intervention for the susceptible state 
[26].

Physical distancing Reduces the likelihood of close contact between susceptible and infectious individuals by maintaining a safe distance 
from one another. Mostly applies to infectious states, but also applies to susceptible individuals by providing some protec‑
tion against effective contact with an infectious individual. Can be implemented through modifications in the contact 
rates for all individuals in the model [27].

Shutdowns (i.e. lockdowns) Restrictions to limit movement of agents to specific environments, thus reducing contact between potentially infectious 
and susceptible individuals and hence disease spread. Lockdowns can involve the closure of non‑essential businesses, 
schools, and public spaces, as well as restrictions on gatherings and travel [28].

Treatment Provides appropriate care based on the severity of the illness, therefore influencing the outcomes and duration of ill‑
ness for individuals in any of the severe symptom states. To prevent further complications, especially for more vulnerable 
groups, some treatments are provided without the need for hospitalisation [29].

Vaccination Stimulates the immune systems of susceptible individuals and provides protection from specific disease outcomes 
if exposed and/or infected. Depending on the type of vaccine, it may affect all health states throughout the entire course 
of infection [30].
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severity of infections, may have a window of time during 
which they can be effectively used and thus specific states 
to which they can be applied.

Applicability to diverse infectious diseases
To illustrate the framework’s utility, we explored its appli-
cation to three respiratory viruses of historical public 
health importance, including measles, SARS-CoV-1, and 
influenza. These diseases have historical relevance in 
Canada, given their rapid evolution into pandemics (e.g. 
the 2009 H1N1 pandemic), and have sociodemographic 
implications associated with the vulnerability of the pri-
mary groups affected (e.g. measles and children or influ-
enza and the elderly). These diseases are situated at three 
different extremes of severity and transmissibility, and 
we explore the HSD’s flexibility across these ranges. We 
emphasise the need for reflection on the range of possible 
health states across disease transmission and progression 
to contribute to more informed public health control 
planning.

Measles
Measles, a vaccine-preventable disease, is notable for its 
highly infectious nature and distinctive rash develop-
ment, particularly in young children [31–33]. Measles 
vaccination is generally thought to be lifelong, though 
studies suggest immunity wanes over time [34, 35]. A 
recent resurgence in outbreaks among non-immunized 
individuals in countries previously free of the disease is 
becoming an increasing concern due in part to COVID-
19 related interruptions to childhood vaccination sched-
ules [31–33]. As vaccination for measles exists, its 
inclusion or some proxy (e.g. proportion of the popula-
tion assumed to be already immune), would be necessary 
to capture present-day outbreak dynamics, but other-
wise, the proposed HSD could be used to model measles 
transmission in a population.

Significant transmission may occur while only mild, 
non-distinct respiratory virus symptoms are being 
experienced, up to four days before the indicative rash 
development which follows an 8- to 12-day incubation 
period [36]. Asymptomatic states have not frequently 
been incorporated into measles models [37, 38], though 
evidence suggests that these exist and can contribute to 
transmission among susceptible individuals [38–40]. 
Variations in symptoms range from mild, generally for 
those with partial pre-existing immunity, to more severe 
forms that can involve multiple organ systems and gen-
erally necessitate hospital care with a potential for death 
[36, 41]. Severity of symptoms varies by age with children 
under five years of age particularly vulnerable [36, 41].

SARS‑CoV‑1
The 2003 SARS-CoV-1 pandemic was notably distinct 
from COVID-19 due to its initial presentation with more 
severe symptoms. High infection fatality rates occurred 
[42]; however, epidemics in countries where it emerged 
were relatively short-lived, in part because the virus was 
only transmissible once symptoms appeared, which were 
more severe and more quickly identified. In turn, control 
measures, such as case isolation and tracing and quar-
antine of contacts, were more easily and successfully 
applied [11].

Examining the HSD for use with SARS-CoV-1 shows 
general applicability. During the 2003 pandemic, there 
was little to no reported asymptomatic transmission 
and few cases with mild symptoms [43]. The effective 
use of quarantine of both asymptomatic contacts and 
mild cases successfully contained spread [43]. A major-
ity of reported cases necessitated hospital treatment [43]. 
Nosocomial transmission occurred, but cases were rap-
idly contained via isolation [44]. Waning immunity of 
SARS-CoV-1 infection was fortunately not tested due to 
the successful eradication of SARS-CoV-1 infections in 
2003.

Influenza
The burden from pandemic versus seasonal forms of 
influenza generally differs due to existing immunity in the 
population and the age of affected vulnerable groups (i.e. 
children versus elderly). Both forms of influenza, with the 
exception of the 1918 influenza, have generally been less 
virulent and transmissible than COVID-19, SARS-CoV-1 
and measles. Pre-symptomatic and asymptomatic trans-
mission is known to occur, though perhaps due to the 
perceived tolerance of mild symptoms, control measures 
are generally focused on reducing the burden of the most 
severe cases through vaccination [11, 45]. A brief exami-
nation of the literature shows good support for the HSD 
with influenza given the variation in the severity of symp-
toms and existence of non-symptomatic states reported. 
More explicit tracking and accounting of these health 
states might elicit different perspectives on effective pub-
lic health control options for influenza.

Further considerations for (re)emerging diseases
Modelling generally aims to help test our understanding 
of disease transmission, ascertain disease burden, and 
assess the potential effectiveness of control measures. 
The proposed HSD, delineating general disease progres-
sion through potential visible and non-visible states, 
leaves room for adapting the model depending on the 
stage of the epidemic and modelling objective at hand.



Page 6 of 8Avramov et al. BMC Infectious Diseases         (2024) 24:1198 

The effectiveness of a given control method depends on 
its attributes and the transmission and virulence charac-
teristics of the causal pathogen. In the application of the 
HSD to a (re)emerging disease, a fundamental question 
to address is the primary purpose of the modelling exer-
cise, which is likely to change depending on the stage of 
the outbreak. Defining the specific modelling objectives 
will guide the adaptation of the HSD to meet the desired 
outcomes.

First, once early estimates of transmission parameters 
and age-related infection, hospitalisation, and fatality 
rates become available, early-stage modelling can assess 
the possible impact of an uncontrolled epidemic, and 
thus the urgency of implementing control. The HSD 
framework can be used to help think through the exist-
ing understanding of epidemic progression throughout 
the population. Questions to ask during this stage are 
whether evidence exists for the inclusion or omission of 
all proposed stages in the HSD. Where uncertainty exists, 
can a range of estimates be used to see how these states 
might affect the transmission dynamics, or are certain 
states irrelevant to the modelling objective and thus can 
these be safely omitted? Second, modelling can estimate 
the capacity of NPIs to control the epidemic given differ-
ent levels of effort, often to maintain incidence at levels 
that healthcare can cope with, to avoid overwhelming sit-
uations as seen in Italy early in the COVID-19 pandemic 
[46]. Questions such as: where do NPIs effectively inter-
sect with the HSD and how does their inclusion impact 
transmission? and, can states irrelevant to the modelling 
objective (e.g. if asymptomatic individuals are found not 
to contribute to transmission), be safely omitted without 
leading to severe under- or over-estimation of the effec-
tiveness of potential NPIs?. Third, if and when a vaccine 
has been developed, and information on vaccine per-
formance at limiting severe outcomes and transmission, 
becomes available, modelling can estimate the necessary 
levels of vaccine uptake by the population to allow lifting 
of NPIs. Here, it is important to ask whether the vaccine 
is severity-limiting or transmission-limiting and how this 
will impact disease progression. In the context of waning 
immunity, the introduction of new variants of concern 
for a disease may also impose modifications of modelling 
parameters [47].

Additional questions to consider are, whether the (re)
emerging disease exhibits variations in severity based on 
socioeconomic and/or demographic factors, and whether 
these should be incorporated into the model to help 
understand the impact of the disease on different popula-
tion groups. This includes examining factors such as age, 
income, co-morbidities (including immunodeficiencies), 

or other vulnerabilities that may influence disease trans-
mission and outcomes. Although out of scope of this arti-
cle, further consideration of human behaviour and how 
it might impact transmission, for example through levels 
of compliance to recommended public health measures, 
should be considered when modelling. Finally, where 
applicable, the impact of potential environmental trans-
mission (e.g. via contaminated surfaces) should be care-
fully considered in modelling parameterisation.

It is important to note that numerous framework-based 
opinions, reviews, and perspectives have been proposed 
in the far and recent past for modelling transmission 
dynamics (e.g. [3, 9, 48–50]). The HSD and items dis-
cussed in this article are not intended to be argued as 
definitive solutions to the inherent complexities of math-
ematical modelling of respiratory pathogen transmission. 
Instead, we set out to aid with the thought exercises that 
accompany the framing of modelling objectives, which is 
especially key when informed public health decisions are 
needed early in the (re)emergence of a pathogen in the 
population.

Conclusion
With important hindsight from the COVID-19 pan-
demic, the HSD serves as a starting point, easily adapt-
able by activating or deactivating the aforementioned 
aspects as necessitated by disease dynamics and/or the 
evolving comprehension of epidemics/pandemics. The 
adaptability of this framework is an asset in scenarios 
involving (re)emerging infectious diseases. In the event 
of a novel pathogen, the HSD provides an initial com-
parative reference of how infectious diseases generally 
progress through a population. Within the context of epi-
demic and pandemic response strategies, it allows rapid 
evaluation of possible intervention strategies even in the 
absence of extensive disease-specific data.

The HSD offers a valuable conceptual framework; how-
ever, its practical application necessitates ongoing refine-
ment and validation through empirical data. Continuous 
data collection of parameters specific to individual dis-
eases remains imperative to enhance the accuracy and 
reliability of transmission dynamics modelling. Its poten-
tial to expedite response planning, provide a springboard 
for novel pathogen assessments, and offer standardised 
modelling approaches underscores its value as a founda-
tional tool for mitigating (re)emerging infectious disease 
threats.

Abbreviations
HSD  Health State Diagram
NPI  Nonpharmaceutical intervention
ICU  Intensive care unit
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