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Abstract 

Infectious diseases can propagate between nursing homes through asymptomatic staff members who are employed 
at multiple facilities. However, the transmission dynamics of infections, both within individual nursing homes 
and across facilities, has been less investigated. To fill this gap, we developed an agent-based model of two nursing 
homes extendible to a network of n nursing homes connected with different percentages of shared staff. Focusing 
on the outbreaks of COVID-19 in U.S. nursing homes, we calibrated the model according to the COVID-19 prevalence 
data and estimated levels of shared staff for each State. The model simulations indicate that reducing the percent-
age of shared staff below 5% plays a significant role in controlling the spread of infection from one nursing home 
to another through personal protective equipment usage, rapid testing, and vaccination. As the percentage of shared 
staff increases to more than 30%, these measures become less effective, and the mean prevalence of infection 
reaches a steady state in both nursing homes. The hazard ratios for infection and mortality indicate that nursing 
homes with higher occupancy rates are more significantly affected by increased staff-sharing percentages. In conclu-
sion, the burden of infection significantly increases with greater staff sharing between nursing homes, particularly 
in high-occupancy facilities, where transmission dynamics are amplified due to greater resident density and staff 
interactions.
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Introduction
The emergence of the SARS-CoV-2 pandemic has left 
a lasting impact on the world since it began spreading 
across the world in early 2020. The pandemic strained 
healthcare services and personnel to their limits in many 

regions of the world, including the US [3, 4, 45]. It also 
resulted in stressful states of loneliness, anxiety, depres-
sion, and many other issues that impact the life of the 
individual and collective society [38, 40, 48, 49].

On March 13, 2020, the Centers for Medicare & Med-
icaid Services (CMS) imposed substantial limitations 
on entry to nursing homes, essentially imposing a lock-
down that restricted access exclusively to residents, staff, 
and contractors [14]. Despite these regulations, research 
indicates that COVID-19 mortality rates among nursing 
home residents were much higher compared to other 
communities and age groups [27, 36, 46]. There are 
nearly 44,736 long-term care facilities in the US, of which 
15,116 of them are nursing homes and roughly make 
up 33% of the facility’s population [26]. These facilities 
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have more than 1.2 million staff and host approximately 
2.1 million residents [26]. During the initial six-month 
period of the pandemic, nursing homes accounted for 
over 40% of COVID-19-related fatalities in the United 
States [24]. In a study of 5,256 US nursing home resi-
dents diagnosed with COVID-19, older age, male gender, 
and the presence of compromised cognitive and physical 
abilities were identified as risk factors for 30-day mortal-
ity [44]. Other risk factors for mortality included facility 
size, urban location, and a greater percentage of African 
American residents [25]. Another study revealed that 
lower health inspection ratings in nursing homes and 
private ownership were associated with higher COVID-
19-related deaths [39]; however, the study did not identify 
significant variations in COVID-19 deaths among nurs-
ing home residents based on race or ethnicity [35]. Nurs-
ing homes with higher rates of SARS-CoV-2 infections 
also experienced higher SARS-CoV-2-related mortal-
ity in residents [9]. In contrast to individuals residing in 
the community at large, nursing home residents exhibit 
a significantly higher vulnerability to COVID-19 [2, 3, 7, 
38, 39]. This can be due to limited mobility and frequent 
interaction with the same individuals within the nursing 
home setting and, therefore, transmitting the infection at 
an elevated rate [51, 54]. In addition to the above-men-
tioned factors, there have been apparent inequalities in 
the healthcare (e.g., testing and vaccination) provided for 
the staff versus the nursing home residents. For instance, 
it was reported that at the end of January 2021, vaccina-
tion levels had a 77.8% median first dose rate among resi-
dents, but the median was only 37.5% among staff [24]. 
In addition, frequent transmission of infection from car-
egivers or residents who never developed symptoms (i.e., 
asymptomatic COVID-19 carriers) showed that universal 
and frequent testing has its own limitations [9, 10]. For 
instance, a study published in Annals of Internal Medi-
cine revealed that Rapid COVID-19 tests miss 90% of 
asymptomatic cases [59].

In addition to vaccination rates and vaccine efficacy [7], 
research shows that staffing levels in nursing homes can 
directly impact the prevalence and incidence of infec-
tions in these facilities [15]. A comprehensive analy-
sis involving 50 million smartphones’ geolocation data 
explored connections between nursing homes [15]. The 
study revealed that 5.1% of smartphone users who spent 
at least one hour in a nursing home also visited another 
facility after nationwide visitor restrictions were enacted 
in March 2020. This potentially pertains to smartphone 
users who were staff members rather than visitors. Using 
cross-sectional regressions, the study showed that staff 
linkages between nursing homes are a significant predic-
tor of infection outbreaks in nursing homes. Other stud-
ies show that the risk of infection is significantly higher 

among staff working across different care homes than 
those who were working in the same care home [16], 
[68]. Nguyen et al. [17] used hybrid system dynamics and 
agent-based modeling to show that the infection risk is 
significantly increased both in shared staff and the resi-
dents of those nursing homes. They also found that fill-
ing vacant positions with staff can lead to more infections 
and outbreaks than leaving these positions unfilled. Bais-
ter et al. [68] use a compartmental modeling approach to 
study the effects of staff sharing. Using sensitivity analy-
sis, they show that limiting staff sharing between facilities 
and reducing staff interactions with the general public 
would greatly reduce the disease burden. Building on the 
studies mentioned above, the main objective of the pre-
sent study is to further increase our understanding of 
the impact of the shared staff on the spread of disease in 
nursing homes. The occupancy rate, defined as the per-
centage of occupied beds in a facility, has been positively 
correlated with higher infection rates due to increased 
crowding [62, 63]. By developing, validating, and simu-
lating an agent-based disease model, we seek to quantify 
the impact of varying levels of staff sharing on disease 
dynamics in two nursing homes with different occupancy 
rates, one of which is overcrowded relative to the other.

An extensive review of agent-based modeling studies 
of COVID-19 disease transmission in a nursing home 
shows that routing testing and vaccination are the most 
effective control and preventive methods. This includes 
assessing the effectiveness of routine testing for COVID-
19 on both staff and residents [18, 29, 30]. One study 
found that an optimal strategy to control rapid COVID-
19 transmission scenario would be daily testing and 
immunization of at least one-third of the population or 
weekly testing and immunizing half of the population 
combined with a 10-day isolation period for positive 
cases [26]. Previous research has also suggested that the 
effectiveness of testing is highly dependent on factors 
such as test turnaround time, detection thresholds, and 
the frequency of mitigation testing [37]. Another study 
found that encouraging staff to vaccinate is not suffi-
cient but may significantly reduce symptomatic cases 
in residents if a vaccine confers at least some protection 
against infection or infectiousness [30]. Other model 
simulations on the transmission dynamic of COVID-19 
explore the use of non-pharmacal interventions (NPI), 
such as personal protective equipment (PPE), in combi-
nation with other prevention strategies, such as achiev-
ing optimal vaccination levels and testing frequencies. 
It has been shown that the most common form of NPI 
prevention strategy, PPE, can substantially reduce mor-
tality in residents if the effectiveness of PPE is above 
50% [7, 18]. Another study found that NPI can signifi-
cantly reduce the spread of COVID-19 and the risk of 
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outbreaks in nursing homes [13]. Summarizing the find-
ings from these prior studies reveals that the transmis-
sion dynamics of infectious diseases in nursing homes 
cannot be attributed to a fixed set of predictors.

Considering the challenges associated with imple-
menting an effective anti-infection program in nursing 
homes—such as reluctance towards vaccination among 
staff and residents and the potential for the spread of new 
strains of infection—the disease modeling can become 
even more complex when there is a network of two or 
more nursing homes with caregivers frequently com-
muting between them to interact with different pools of 
residents. To address this, we have developed an agent-
based model (ABM) that measures the significance of 
shared staff between two nursing homes. Furthermore, 
this study takes into account the testing frequency and 
vaccination levels among residents and caregivers in two 
nursing homes designed to represent the average condi-
tions found in such facilities in the United States. Our 
objective behind the creation of this model is to quantify 
the effect of a limited shared caregiver pool split between 
two nursing homes using a case study of COVID-19. 
From there, we want to use simulations of the calibrated 
model to assess the effects of shared staff on policies that 
are supposed to effectively reduce the spread of infec-
tious disease among nursing home residents.

The rest of this paper is organized as follows. 
Sect.  "Materials and Methods" provides the details of 
the model, including the model structure, model param-
eters and  progression of infection. Sect.  "Results" pro-
vides the details of model validations  and simulations, 
and Sect. "Discussion" presents the primary findings and 
conclusions.

Materials and methods
Model structure
To simulate the transmission of COVID-19 within a 
network of two nursing homes where caregivers are 
employed in multiple facilities, we developed a stochas-
tic agent-based model using two synthetic nursing homes 
as the basis. These two nursing homes are called Nurs-
ing Home 1 (or NH1 for short) and Nursing Home 2 (or 
NH2 for short). NH1 was given a resident size of 56 peo-
ple with a staff size of 25 caregivers, and NH2 was given 
a resident size of 82 people with a staff size of 40. The 
rationale for choosing specific resident sizes is rooted in 
the mean number of residents per nursing home in the 
United States, accounting for variations in resident size 
across states. The distribution of residents per state was 
derived from demographic information sourced from the 
Long-Term Care Community Coalition [41] and [42]. For 

the fitted gamma probability distribution of residents, see 
Figure S1 and Table S1 in the supplementary document.

Tables S2 and S3 of the supplementary document 
provide the number of staff and shifts used for baseline 
model simulation. The calculation of specific staff sizes 
for NH1 and NH2 was based on hours per resident per 
day (HPRD) values. We assumed 3.50 HPRD for NH1 
(196 h of care per day for 56 residents) and 3.56 HPRD 
for NH2 (292  h of care per day for 82 residents). Note 
that the minimum HPRD requirement for US nursing 
homes is 3.50 [31]. For a full breakdown of HRPD, staff 
and resident sizes, number of workers, and type for each 
shift used in the agent-based model, see Table S4. We set 
the number of workers for each type of shift and then 
divided the total number of hours for each worker type 
by the total number of hours that are needed to be cov-
ered to get HRPD for each worker type. Minimal care 
standards recommended by researchers indicate that for 
registered nurses (RN), their total HPRD should be 0.75; 
for licensed practical nurses (LPN), their HPRD should 
be 0.55; and that registered nursing aids (RNA) should 
be set at 2.8 [30]. However, research studies indicate that 
most nursing homes fall short of meeting these stand-
ards [19]. The District of Columbia is the only region that 
mandates this overall staffing level, and merely six states 
require the presence of a registered nurse 24 h a day, irre-
spective of facility size [19]. Therefore, we applied staff 
sizes that were less than or equal to the recommended 
levels for each staff type.

The constructed model takes account of day-to-day 
operations within and between two nursing homes (NH1 
and NH2) in a period of three months. Figure 1 illustrates 
a schematic representation of the location of bedrooms 
with up to three residents per room and quarantine 
rooms reserved for residents. Other locations include 
recreation areas, which, for the purposes of our model, 
are currently off-limits to residents and staff interactions. 
Both nursing homes have the same layout to reduce the 
variability that could arise from structural differences 
between nursing homes.

Agents in the model include nursing home residents 
and caregivers divided into three different types of car-
egivers: RN, LPN, and RNA. Services that caregivers 
provide include basic medical care, ensuring patient 
comfort, helping with activities of daily living, discuss-
ing health care and treatment plans, and reporting vital 
patient information [53]. Note that RNs differ from the 
LPN and NRA as their duties are more administrative 
based rather than duties that involve directly working 
with residents. For example, typical duties that an RN 
would include administering medication and treatment 
to residents, working with doctors to coordinate care 
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plans, performing diagnostic tests, and overseeing other 
nursing staff [53].

Figure 2a shows that the infection can be transmitted 
from one nursing home to another by asymptomatic 
staff members working in both nursing homes. The 
disease transmission dynamics associated within and 
between the two nursing homes were assumed to follow 

the Susceptible-Exposed-Infectious-Recovered (SEIR) 
compartmental framework. This SEIR model consists of 
seven different compartments of susceptible, exposed, 
infectious, vaccinated, hospitalized, recovered, and 
deceased residents. We assume that staff members 
who show COVID-19 symptoms will stop working 

Fig. 1 The floor plan for two nursing homes (NH1 and NH2) considered in the agent-based model. Agents can be susceptible, infectious, 
or recovered. For each simulation, a certain percentage of staff is shared in both nursing homes. Staff are divided into three different types: 
registered nurses (RN), licensed practical nurses (LPN), and registered nursing aids (RNA)

Fig. 2 Schematic diagrams of the proposed Agent-Based model. a COVID-19 infection can spread within each nursing home by infectious 
residents and staff. It can also spread from one nursing home to another by asymptomatic staff members working in both nursing homes, (b) 
Residents of each nursing home can enter each state according to their vaccination and health status
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immediately. Figure 2b shows the compartmental SEIR 
diagram within each nursing home.

Our agent-based model assumes that infected residents 
are not replaced by new residents during the simulation. 
They either remain quarantined within the facility or are 
transferred to a healthcare facility. Caregivers who become 
infected with SARS-CoV-2 are replaced with susceptible 
staff members. Recovered agents remain immune from 
infection over the course of 120  days with an assumed 
exposed period of a logarithmic normal distribution [33]. 
A complete summary of baseline parameters and corre-
sponding references can be found in Table 1.

Disease dynamics
When an infectious agent comes in contact with a suscep-
tible agent, the transmission of the virus between the two 
is assumed to follow a Bernoulli probability distribution 
(i.e.,P(yi = 1|xj = 1) ≡ pt with yi = 1 representing sus-
ceptible agent ( yi ) becoming infectious, given the agent xj 
being in an infectious state. The variable pt of the ABM 
is calculated per agent at each time step of the simulation 
using the following formula.

where the odds ratio ω(ORw) stands for the model’s 
global baseline transmission probability of both caregiv-
ers and resident’s agents, the variable π(ORπ ) is a value 
that represents the odds of transmission reduction due 
to PPE use, and Xπ represent the effect upon transmis-
sion caused by the presence of PPE. The term v (O Rv ) 

(1)pt =
eln(ORωXω)+ln(ORπXπ )+ln(ORvXv)

1+ eln(ORωXω)+ln(ORπXπ )+ln(ORvXv)

represents the odds of transmission reduction due to vac-
cination and Xv represent the effect upon transmission 
caused by the vaccine status.

As suggested by research [40, 47], we assumed that 
pt for asymptomatic, presymptomatic, and atypical 
manifestations of COVID-19 in staff and residents is 
much higher than pt for symptomatic individuals. For 
the preventive strategies, we assumed that testing and 
isolation measures were already in place. Therefore, 
infectious agents can transmit COVID-19 only if they 
have not been detected by a test or isolated from other 
agents. We assumed a exposed period modeled by a 
lognormal distribution characterized by a mean dura-
tion of 7 days [33]. After the end of the exposed period, 
an agent will enter the infectious state where, on aver-
age, 39% of agents will remain in an asymptomatic state 
until recovery [21]. After the exposed period, on aver-
age, 23% of the infectious agents need hospitalization 
[6, 20]. The average time spent in a hospital was consid-
ered about six days [20].

Agents who were asymptomatic yet never needed 
hospitalization were set to an average of 15  days for 
their recovery period [22]. Since we assume that car-
egivers are replaced once they become infectious with 
non-infectious replacement, their ability to transmit 
the infection was no longer considered in the model 
simulations. We also assumed that when residents con-
tract their primary infection, it will provide them with 
sufficient immunity throughout the remainder of the 
time left in our 91-day simulations.

Table 1 A list of the model parameters values and descriptions that reflect disease transmission dynamics within and between 
nursing  homesf

a The transmission rate in Nursing Home 1 was assumed to be slightly lower than that of Nursing Home 2, reflecting differences in management practices and quality 
of care (mean value of 0.14 versus 0.15)
b Hospitalization and mortality rates vary greatly among nursing homes [38]
c In most Nursing homes, residents were classified as recovered after a minimum of 14 days from the symptom onset and provided that two consecutive tests for 
SARS-CoV-2 were negative [12]
d Percent values greatly fluctuate across states and time periods. For instance, as of January 2024, only 38% of residents and 15% of staff have received the new 
vaccine. Meanwhile, 50% of residents and 22% of staff received their vaccination series in 2022 [57]
e This is the estimated value for the Omicron variant
f Values of β2 and β3 are assumed to be zero. Parameter values for f a , σ 1, ρ1 and V2 are both for staff and residents

Symbol Parameter description Mean value Refs

f a Proportion of asymptomatic individuals 0.39 [21]

σ 1 Probability of shedding 0.38 [33]

β1 Infection transmission rate for residents 0.15a [25, 33]

ρh Proportion of hospitalized residents 0.23 [6, 20]

β4 Mortality rate among hospitalized residents 0.26b [43, 56]

ρ1 Recovery rate = 1/duration of infection 1/15  daysc [12]

ρ3 Percent recovery among hospitalized residents 40.7%b [43, 56]

V1 Percent vaccinated for residents (and staff ) 70.5%, (40.1%)d [57]

V2 The period until vaccine-induced immunity wanes 87  dayse [58]
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Staff and resident interactions
Our agent-based model consists of two main types of 
agents: the residents and the caregivers. We assumed 
that nursing homes follow strict visitor restrictions and, 
therefore, the transmission of infection from visitors to 
staff or residents is negligible. For each nursing home, 
we limit resident size per room to three while assigning 
separate rooms for the quarantine of infected residents or 
for residents to be isolated for specialized care. The num-
ber of residents per quarantine room is limited to one at 
a time, with a total of 10 rooms split evenly between NH1 
and NH2.

Individual nursing home parameters are described in 
Table  1, and a description of the combined distribution 
of staff types can be found in Table  2. Each simulation 
assigns a percentage level of shared staff between NH1 
and NH2 by taking the total number of shared staff found 
in Table  2. The percentage value is then used to deter-
mine how many of each type of staff will be distributed 
among the agents who make the shared staff group.

Since our staff consists of three different types of 
nurses (i.e., RN, LPN, and NRA), we assumed different 
daily contact patterns with residents (see Table  2). To 
translate these patterns into simulations, we parameter-
ized them by establishing a set of contact-per-hour prob-
abilities delineated through the Poisson distribution. For 
RNA, the mean value Y1 is equal to 75, suggesting that 
they interact with an estimated average of 7.5 residents 
per hour (Table  2). Similarly, for RN, we considered an 
average value of 6, and LPN our mean value was equal to 
10. These parameters were derived by exploring data on 
the hours of care received per resident/day (HRD) from 
CMS nursing home databases [13, 41]. For RNs, LPNs, 
and RNA, who work in both nursing homes, we assumed 
a Poisson distribution with differing rates to capture the 

number of weekly interactions with residents and non-
shared staff.

All residents were assumed to have a uniform prob-
ability of contacting any of the three staff types. Uniform 
probability was also assumed for the case of a virus being 
introduced by any of the three staff types. The simulation 
also assigns the staff to one of three different work sched-
ules that factor in length and time of day as follows. We 
assumed that 41% work full-time (40 h a week), 37% work 
part-time (hours worked ≤ 32), and 22% work overtime 
(hours worked ≥ 40). Also, 40% of staff work the morning 
shift (7 am to 3 pm), 40% of staff work the evening shift 
(3  pm to 11  pm), and the remaining 20% of staff work 
the overnight shift (11 am to 7 am). For simplicity, these 
assumptions were the same for both nursing homes. 
When staff are not working at either of the two nursing 
homes, they are assumed to be spending time in the com-
munity. Staff type and shift length are based on a sample 
of two nursing homes that match the total combined staff 
multinomial distribution found in Table S3 of the supple-
mentary document.

Interventions
To simplify our model, we only parameterized the most 
practical interventions to control transmission of SARS-
COV-2. These parametrized interventions consist of PPE 
usage, rapid testing, and vaccination. We considered that 
staff receive a test every 14 days, while only one resident 
per room is tested every 14 days. This means that it takes 
longer than a month for all residents to be tested. PPE’s 
effect in reducing COVID-19 transmission correlates 
with the shedding rate and disease infection probability 
parameters. Since our primary objective was to investi-
gate the impact of shared staff on disease transmission, 
we only used the results of phase 3 clinical test results for 

Table 2 Range of parameters used in global sensitivity analysis

a These numbers were used to estimate the infection transmission rates associated with staff members

Parameter Description Range of values

Gp Global SARS-CoV-2 virus shedding for agents [0.27, 0.49]

Por Odds ratio for PPE use in a nursing home [0.07, 0.20]

Ts Sensitivity of COVID-19 test [0.70, 0.90]

Rh Percent of agents who are hospitalized [0.15, 0.30]

Bm Percent of agents who die from the infection [0.20, 0.40]

Ap Percent of asymptomatic agents [0.25, 0.53]

V1 Percent vaccinated [15, 90]

V2 Number of days until vaccine-induced immunity wanes [67, 129]

Y1 Number of contacts per hour for RNA  agentsa [6, 9]

Y2 Number of contacts per hour for RN  agentsa [3, 9]

Y3 Number of contacts per hour for LPN  agentsa [5, 15]

Sp Percent of staff who work in both nursing homes 0, 5, 10, 20, 30, 50
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the Pfizer and Moderna vaccines to give an approxima-
tion of the vaccination effect (the value was set to 0.043 
for the baseline scenario). We considered a vaccination 
schedule with a 21-day gap between the first and second 
doses, along with a moderate level of efficacy before the 
second dose.

For the baseline scenario, we assumed policies for resi-
dents, such as limiting resident contact with the com-
munity, daily screening of residents, and some use of 
PPE in nursing homes. For cyclic testing of residents 
and staff, we increased the time from the standard week 
to bi-weekly as we wanted to study the impact of shared 
staff more than interventions. Residents who tested posi-
tive were not removed but rather isolated from their 
roommates.

Shared staff
We used data from existing literature to guide our 
assumption about the percentage of shared staff [9–11]. 
Variables captured in the dataset include the number of 
facilities, number of certified beds, average number of 
beds per facility per state, total patients’ days, number of 
residents, HPRD, number of COVID-19 cases per state, 
mean degree, mean strength, total number of cases per 
state, and average registered nurse. Some studies have 
estimated the mean degree and mean strength of nursing 
home networks was estimated using cell phone signals 
to track staff activity [15]. Specifically, the mean strength 
value refers to the average total number of smartphones 
that appear in a nursing home and some other nursing 
homes, and the mean degree refers to the average num-
ber of neighbors that are connected to a nursing home 
[15]. From this specific dataset, we estimated the distri-
bution of shared staff percentage levels per state. (i.e., 
assuming a mean degree of one, we divided the total 
amount of shared staff connections per nursing home by 

the total nursing staff in a nursing home). From the esti-
mated distribution, we observed that most states have 
an estimated percentage level of less than 20% and that 
a large portion of states have less than 10% estimated 
level of shared staff. Our highest estimated shared staff 
percentage was about 50%, while roughly four states had 
shared staff levels estimated between 20 to 35%. The 
complete breakdown of the estimated shared staff per-
centage probability distribution can be seen in Fig. 3.

Model implementation, outcomes and reproducibility
We followed the Design Concepts and Details (ODD) 
protocol for model description and replication [28]. To 
run simulations for our ABM, we used version 1.9 of the 
GIS Agent-Based Modeling Architecture or GAMA [50]. 
For analysis of our simulations, we mainly used the soft-
ware package MATLAB [26]. Model reproducibility is a 
crucial aspect of scientific research and computational 
modeling, emphasizing the ability to recreate and vali-
date results obtained from a given model. To replicate 
our study, researchers can download and run the source 
codes at the following GitHub link: https:// github. com/ 
Corkr an1/ NH_ COVID Detailed instructions on how to 
run the codes and how to interpret the outputs can be 
found in the supplementary document entitled “Instruc-
tions to Run Simulations.” Simulations were run at 20,000 
per shared staff level at a length of 91 days with 3 different 
controlled seeds for each day. For each of those seeds, the 
simulation took data points every 3 h with a time series 
of 720 observations accounting for each simulation. The 
reason behind the increase in the level of shared staff was 
based on trends found in the estimated probability distri-
bution of shared staff throughout the United States. Key 
output variables from our simulation that were meas-
ured are prevalence, death rates, individual and basic 
reproduction numbers, hazard ratios of infection and 

Fig. 3 Estimated percentage of staff working in more than one nursing home facility according to each state

https://github.com/Corkran1/NH_COVID
https://github.com/Corkran1/NH_COVID
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mortality, cumulative number of infected, and number 
of hospitalizations. In a broad sense, the basic reproduc-
tion number  (R0) can be best described as a measure of 
the transmissibility fitness of an infection in a totally sus-
ceptible population [3, 8, 29]. Specifically,  R0 is defined 
as the average number of secondary infections generated 
by a single infected individual in a completely suscepti-
ble population. If  R0 > 1, it indicates that the disease has 
the capacity to spread within the population, potentially 
leading to an epidemic. Conversely, if  R0 < 1, the disease 
is likely to die out over time. Similarly, the individual 
reproduction number  (IR0) is the average number of sec-
ondary infections caused by a specific individual over the 
course of infection [23]. We used this definition to calcu-
late the basic reproduction number as the average num-
ber of a specific group (e.g., nurse or resident) at different 
time steps for infection over the course of each simula-
tion. Applying these definitions to our model, we see that 
 IR0 deals with how many new infections each agent can 
cause on its own, while the basic reproduction number 
represents the average number of infections caused by 
staff or residents over the course of infection.

Our model was calibrated and validated with data on 
positive COVID-19 cases reported between May 2021, 
and January 2023, reported by CMS [13].

Analysis of outcomes and sensitivity analysis
We performed hypothesis testing to determine if simu-
lated outcomes, such as daily prevalence rates, were sig-
nificantly different from our baseline using parametric 
and non-parametric methods. This was done to evalu-
ate the qualitative impact of the increasing percentage 
of shared staff prevalence and incidence of infection. 
We used MATLAB to generate descriptive statistics 
and figures on the key variables listed in Table 1 and the 

prevalence of COVID-19 infection within the nursing 
home population.

To conduct the global sensitivity analysis, we initially 
converted the model outputs pertaining to infection 
prevalence into a binary format. Specifically, instances 
where the prevalence at a given time fell below the over-
all average were assigned to a value of zero; otherwise, 
a value of one was assigned. This binary transformation 
was performed separately for the prevalence of COVID-
19 in the staff population and the resident population. 
Subsequently, we employed classification and regression 
tree (CRT) modeling [52] to discern the most influen-
tial parameters with respect to residents and staff being 
infected (coded as 1) and not infected (coded as zero). 
These analyses were conducted across 50,000 simula-
tions. We used the IBM SPSS statistical software [5] to 
generate regression trees and obtained a rank of the 
model’s most sensitive parameters. Details of the global 
sensitivity analysis can be found in the supplementary 
document Table S5.

Results
Global sensitivity analysis
The results of our CRT analysis showed that model pre-
dictions on prevalence percentage are sensitive to com-
plex combinations of existing parameters. As shown 
in Fig. 4, for both analyses, the number of residents (N) 
and the number of available beds (B) were the top two 
important model parameters. This aligns with previ-
ous research findings indicating that residents in nurs-
ing homes situated in socially deprived areas exhibited 
an elevated incidence of COVID-19 infection, partly 
because of a lack of resources and crowdedness and 
occupancy rate [20, 34]. As demonstrated in the subse-
quent sections, the prevalence of infection and hazard 

Fig. 4 The independent variable significance ranking based on the (a) staff and (b) resident COVID-19 prevalence
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ratios in NH1 are significantly higher, which can be par-
tially attributed to its higher occupancy rate, expressed 
as N/(N + B). The next three important parameters were 
the virus-shedding rate ( Gp ), percent mortality among 
hospitalized residents ( Bm ), and Percent recovery among 
hospitalized residents ( ρ2 ), which is consistent in both 
CRT models. See Fig. 4 for bar charts associated with the 
global sensitivity analysis. Also, the overall accuracies of 
the CRT models (i.e., the proportion of correctly classi-
fied cases out of the total cases) were more than 90% (see 
Table S5b in the supplementary document).

Model validation
To evaluate the validity of the model, we adopted a 
broad approach by using data from nursing homes 
across multiple states rather than focusing on two spe-
cific facilities. Extensive simulations demonstrated that 
the model is generalizable to various pairs of nursing 
homes that adhere to its core assumptions. Namely, we 
employed the time series data of COVID-19 prevalence 
among staff and residents in nursing homes across six 
different States during the omicron phase of the pan-
demic (i.e., weeks from November 28, 2021, to February 
27, 2022, encompassing a total of 14 weeks). The selec-
tion of these States was based on their respective esti-
mated average percentages of shared staff (see Fig.  3). 

The model simulations were fitted to the time series 
prevalence nursing home data from Mississippi, North 
Dakota, New York, Nevada, Kentucky, and Idaho with 
corresponding 0.15%, 5.13%, 9.50%, 14.73%, 20.15%, and 
31.09% estimates of shared staff, respectively. See Fig-
ures S2-S4 in the supplementary document for the esti-
mated probability density functions and boxplots of the 
prevalence data.

The process of model fitting was completed in two 
steps. First, the prevalence values were iteratively simu-
lated using the GAMA simulation platform, and then 
Matlab was employed to test the validity and generate the 
boxplots. Figure 5 presents a comparative visualization of 
box plots for the model simulations (depicted in blue and 
gray) alongside the weekly box plots of the prevalence 
data (depicted in red). While the model fails to capture 
certain spikes, there is a substantial level of agreement 
between the box plots of the model simulations and the 
observed weekly prevalence data. Similar behavior was 
observed for NH2, as shown in Figure S5 of the supple-
mentary material.

Focusing on the middle 50% of values, represented by 
the interquartile range (IQR), we employed three metrics 
to further assess the validity of the model as follows. The 
Overlap Coefficient (OP), also referred to as the Szymkie-
wicz–Simpson coefficient [65], quantifies the agreement 

Fig. 5 Simulated prevalence boxplots of COVID-19 infection in NH1 residents were fitted to weekly prevalence data of six different states (shown 
with red bars) associated with the emergence of Omicron variant (weeks from November 28, 2021, to February 27, 2022). There is a fair amount 
of agreement between the model simulations and the prevalence data
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between the IQRs of the model simulations and the 
observations. It is defined as the ratio of the intersection 
length of the two IQRs to the length of the smaller IQR:

To evaluate the alignment between the model and the 
observations, we also calculated the Modified Overlap 
Coefficient (MOP), which prioritizes the observed data 
by measuring the proportion of the observed IQR that 
overlaps with the model IQR. This asymmetrical metric 
is given by

Unlike the OP, which provides a balanced measure of 
agreement, the MOP emphasizes alignment with the 
observed data. Building upon the principles of penalty 
functions [66, 67] and overlap-based similarity measures 
[65], we also incorporated a dynamic penalty into the 
MOP to account for excessively wide model intervals, 
while still quantifying the overlap. Specifically, the Pen-
alty-Adjusted Overlap Coefficient is given by

where γ is a positive value that controls the influence of 
penalty.

Table  3 summarizes the goodness-of-fit results for 
the ABM, based on the mean values of OP, MOP and 
OCPA, where values corresponding to NH2 are shown 
inside the parentheses. For NH1, the model demon-
strated high accuracy across states, with mean(OP) val-
ues ranging from 0.70 (Idaho) to 0.97 (New York). The 
mean(MOP) values were slightly lower, ranging from 
0.68 (Idaho) to 0.95 (New York). The mean(OCPA) val-
ues, which account for observed case adjustments, were 

(2)OP =
IQRObserved ∩ IQRModel

min IQRObserved , IQRModel

(3)MOP =
IQRObserved ∩ IQRModel

IQRObserved

(4)OCPA =
IQRObserved ∩ IQRModel

IQRObserved

×min
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lower overall but maintained a reasonable range, with the 
highest value of 0.84 observed in New York and the low-
est of 0.63 in Idaho. For NH2, the model showed similar 
trends, though accuracy was slightly lower in most cases. 
mean(OP) ranged from 0.69 (Idaho) to 0.95 (New York), 
while mean(MOP) ranged from 0.65 (Idaho) to 0.94 (New 
York). The mean(OCPA) values for NH2 were slightly 
higher than those for NH1 in some states, such as New 
York (0.86) and Nevada (0.84). Overall, the results sug-
gest that the ABM is robust in estimating prevalence for 
both nursing homes, with some variations influenced by 
state-specific factors. The higher accuracy in states like 
New York indicates that the model performs better in 
environments with more comprehensive prevalence data.

Prevalence of infection
Baseline scenario
In the baseline scenario, we assumed that vaccination was 
equally distributed, PPE use was low, there was bi-weekly 
testing, and most importantly, there was no shared staff 
between the two homes. Under these assumptions, the 
mean prevalence for 91  days was 6.71% (SD 11.36) and 
4.58% (SD 7.76) for nursing homes 1 and 2, respectively 
(see Table  4). The ABM was initialized with a single 
infection originating from a caregiver, who was part of 
the shared staff pool and initially transmitted the infec-
tion in NH1 or NH2.

Relation between prevalence and shared staff percentages
Increasing the shared staff levels from 0 to 30% resulted 
in a significant rise in COVID-19 infection rates in both 
nursing homes. Thereafter, the rate of increase slowed 
down, and the prevalence of infection reached an equi-
librium for each nursing home (about 79% and 51% for 
NH1 and NH2, respectively). For instance, as shown in 
Table 4, an increase of 5% shared staff from the baseline 
results in a slight increase in mean prevalence to 8.40% 
from the baseline value of 6.71% in NH1 and a gradual 

Table 3 Mean values of the Overlap Coefficient (OC)a, Modified Overlap Coefficient (MOP) and Penalty-Adjusted Overlap Coefficient 
OCPA b for measuring model performance using the prevalence data from six different  statesb. The values inside the parentheses 
correspond to model estimations for NH2

a The maximum Overlap Coefficient (OC) across all the states is equal to 1
b We chose γ = 0.20 and γ = 0.15 for NH1 and NH2, respectively
c The estimated percentage of shared staff in each state is as follows: Mississippi (0.15%), North Dakota (5.13%), New York (9.50%), Nevada (14.73%), Kentucky 
(20.15%), and Idaho (31.09%)

cMetric/State Mississippi North Dakota New York Nevada Kentucky Idaho

mean(OP) 0.89 (0.80) 0.85 (0.80) 0.97 (0.95) 0.91 (0.90) 0.85 (0.84) 0.70 (0.69)

mean(MOP) 0.89 (0.79) 0.82 (0.75) 0.95 (0.94) 0.91 (0.90) 0.84 (0.82) 0.68 (0.65)

mean(OCPA) 0.81 (0.74) 0.72 (0.69) 0.84 (0.86) 0.81 (0.84) 0.77 (0.77) 0.63 (0.61)
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increase in mean prevalence from 4.58% to 5.74% in 
NH2. This pattern of small increases in the daily mean 
prevalence rates was observed for both nursing homes. 
After a threshold value near 30%, both nursing homes 
retained almost the same levels of mean prevalence as 

before (i.e., mean prevalence of 11.57% and 7.90% for 
nursing homes 1 and 2, respectively).

Cumulative prevalence refers to the proportion of 
new infections among the residents or staff popula-
tion over the course of the study, which spans 91 days. 
Figure 6 illustrates the time series of mean cumulative 
prevalence of COVID-19 in residents and staff mem-
bers for NH1 and NH2. Increasing the level of shared 
staff significantly increased the mean cumulative prev-
alence of the infection. For instance, at the level of 30 
percent shared staff, the cumulative prevalence among 
both NH1 and NH2 residents was 60% from days 55 to 
90. As the proportion of shared staff increased from 0 
to 30%, the mean communicative prevalence among 
NH1 residents increases, but that of NH2 seems to 
reach a steady state near 80%. The main reason for 
such patterns is that NH1 is overcrowded (82 residents 
with zero vacant beds), and the infection spreads much 
faster. NH2 is not crowded (56 residents with 26 vacant 
beds), and therefore, it responds to the increased per-
centage of shared staff at a slower rate. We also simu-
lated the prevalence of COVID-19 for up to 180  days, 
where the time series reached endemic values in all 
cases of shared staff.

Infection and mortality hazard ratios
The increased levels of shared staff directly resulted in 
increased hazard of death for individuals residing in the 

Table 4 Descriptive statistics of daily prevalence of COVID-19 
infection among residents of nursing homes 1 and 2

Percent 
of shared 
Staff

Mean 
prevalence

Median 
prevalence

Maximum 
prevalence

Std of 
prevalence

Nursing Home 1
 0 6.71% 1.62% 73.21% 11.36

 5 8.40% 1.79% 73.21% 12.21

 10 9.63% 4.45% 75.36% 12.56

 15 9.98% 3.57% 78.57% 12.65

 20 10.46% 5.36% 79.21% 12.84

 30 11.57% 5.36% 79.21% 13.29

 50 11.57% 5.35% 79.22% 13.29

Nursing Home 2
 0 4.58% 1.04% 50.14% 7.76

 5 5.74% 1.22% 50.89% 8.34

 10 6.58% 2.44% 54.88% 8.58

 15 6.82% 2. 44% 53.66% 8.64

 20 7.15% 3.66% 50.5% 8.77

 30 7.90% 3.66% 50.8% 9.08

 50 7.91% 3.66% 51.2% 9.08

Fig. 6 Simulated cumulative prevalence of COVID-19 among staff and residents of nursing homes 1 and 2. Increasing the shared staff results 
in an increase in the cumulative prevalence
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nursing homes. For instance, at a 5% shared staff level, 
we observed relatively low values for mortality hazard 
ratios, with NH1 exhibiting a ratio value of 1.6 and NH2 
a value of 1.39 (see Fig. 7a). As the shared staff percent-
age increased beyond 5%, a pattern emerged, indicating 
an incremental rise in death hazard ratios for each nurs-
ing home. Upon reaching a 50% shared staff level, the 
mortality hazard ratio for NH1 reached 2.5, while NH2 
had a hazard ratio of 1.52. Hence, based on our simu-
lations, individuals—whether residents or caregivers 
are more prone to mortality due to the increased level 
of shared staff. This is important because the assumed 
levels of vaccination could not control the hazard ratios, 
and it suggests that increasing shared staff can neutral-
ize disease control and preventive measures. Further 
details on specific mortality hazard ratio values for our 
shared staff scenarios and Cox regression statistics can 
be found in the supplementary document, particularly 
in Tables S8 and S9.

Furthermore, the escalation of shared staff levels also 
yielded a substantial increase in the likelihood for resi-
dents and caregivers in both nursing homes to experience 
the hazardous event of COVID-19 infection. To illustrate, 
at the 5% shared staff level, NH1 exhibited an initial haz-
ard ratio of 2.24, while NH2 demonstrated an infection 
hazard ratio of approximately 1.57 (see Fig.  7b). Analo-
gous to the mortality hazard ratios, an ascending trend is 
visible in the odds as the level of shared staff percentages 
increased across our simulations (Fig. 7). In comparison 
to the mortality hazard ratios, it is noteworthy that at the 
30% and 50% levels of shared staff, no significant altera-
tions occurred in the ratio values within our simulations. 
Consequently, a threshold level of 30% for shared staff 

was identified as the point at which significant changes 
ceased to transpire for infection hazards and reached an 
equilibrium.

Discussion
The present study employs agent-based modeling and 
simulation to assess the impact of asymptomatic spread-
ers on nursing home staff and residents. The adverse 
effects of staff sharing are amplified in high-occupancy 
facilities, as evidenced by NH1’s higher prevalence and 
hazard ratios compared to those of NH2 (Table 4, Figs. 6 
and 7). The study’s key contributions are twofold: first, 
the proposed model is validated using state-level data, 
enhancing its generalizability and reproducibility; sec-
ond, it quantifies the impact of critical factors, includ-
ing staff sharing and occupancy rates, on the burden of 
infection across nursing homes. Hence, the present work 
differs from the previous studies that employed modeling 
strategies to assess the dynamics of infection in a single 
nursing home. These studies investigate the behavior of 
individuals through a defined set of rules [35] or investi-
gate the effects of various interventions in a single nurs-
ing home facility [18, 22, 29, 30, 37]. Other studies that 
include more than one nursing home [16, 17] demon-
strate that the risk of infection increases as the number of 
shared staff is increased. The referenced study by Ryskina 
et al. [64] highlights a correlation between infected resi-
dents and staff, which aligns with our findings (see Fig. 6). 
It also notes that higher occupancy is linked to increased 
infections in staff, consistent with the higher prevalence 
of infection observed in NH1 staff compared to NH2 
staff. Our simulations indicate that facilities with 5% or 
more shared staff experience significantly higher hazard 

Fig. 7 Hazard ratios of infection and mortality as a function of percent shared staff. The escalation of shared staff levels results in a substantial 
increase in (a) the hazard ratio of mortality and (b) the likelihood for residents of both nursing homes to contract COVID-19 infection
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ratios for mortality and infection, with the effect being 
more pronounced in NH1 due to its higher occupancy 
rate.

The present study lays out the foundations for investi-
gating the global epidemiology of infection in a network 
of nursing homes connected by shared staff. However, 
it should be noted that the proposed model has several 
limitations as follows. We have assumed restricted visi-
tor access in our model, making asymptomatic staff the 
only external source of infection for residents. This was 
not the case at the beginning of the COVID-19 pan-
demic. Hence, the model cannot be applied to cases 
where visitor restriction is not in place. The model 
assumes connections only between two nursing homes, 
despite the potential for multiple nursing homes to be 
interconnected. Although extending the model to net-
works of n nursing homes is possible, we anticipate that 
the computational cost will exponentially increase with 
the value of n. Also, the calculated reproduction num-
bers can be divided into four categories resident-to- resi-
dent, resident-to-staff, staff-to-resident, and staff-to-staff 
reproduction numbers. This can enable researchers and 
decision-makers to identify the most effective control 
and preventive measures according to each reproduction 
number. Another limitation of the model is that other 
staff (such as cleaners, cooks, gardeners, physiothera-
pists, and administrators) have not been included. These 
individuals could also contribute to the transmission of 
infection in nursing homes [15]. We assumed identical 
layouts for both nursing homes to minimize variability 
from structural differences. However, real-world nurs-
ing homes may have diverse layouts. Another limitation 
of this study is the assumption of a Poisson distribution 
for contact patterns within the agent-based model, which 
does not fully capture the heterogeneity of real-world 
contact networks.

Health equity refers to fairness and justice in health-
care, ensuring all individuals receive the care they need 
regardless of circumstances [55]. Sharing staff between 
nursing homes, especially given minimal HPRPD, can 
create health equity issues by leading to uneven distri-
bution of care. When staff are stretched thin across two 
nursing homes, staff burnout can increase, leading to 
higher turnover and reduced care quality [60, 61]. Tired 
or overworked staff are less able to provide high-quality, 
attentive care, particularly for residents with complex 
needs if staff are constantly moving between two nursing 
homes. The present study highlights the adverse effects of 
shared staff in relation to the transmission of infectious 
diseases, especially during an outbreak in a nursing home 
with a high occupancy rate (see Sect. "Infection and 
mortality hazard ratios"). Addressing issues related to 
inadequate wages and the absence of financial incentives 

is the first step in enhancing the recruitment and reten-
tion of employees [1, 32]. This can mitigate the prevalent 
staff shortages in nursing homes and reduce the occur-
rence of staff members working across multiple facilities. 
While some nurses are actively promoting health equity 
through educational efforts and advocacy within their 
professional associations, fostering a more widespread 
commitment among all nurses can further propel the 
nationwide advancement of health equity [36, 38]. There-
fore, it is imperative for nursing organizations to col-
laboratively formulate a comprehensive agenda aimed at 
addressing the social determinants of health and realizing 
health equity goals [55]. In addition, there is a need for a 
more nuanced approach to quarantine protocols in nurs-
ing homes that balances infection prevention and control 
with the overall health and quality of life of residents.

In conclusion, limiting the allocation of personnel 
across multiple nursing home facilities can significantly 
reduce transmission risks during outbreaks of highly 
infectious diseases. Further research is needed to fully 
understand the trade-offs between such restrictions and 
the operational flexibility during periods of lower out-
break risk.
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