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Abstract
Background  Lactobacillus spp. depleted and high diversity of vaginal microbiota is closely related to human 
papillomavirus infection and cervical cancer. However, the role of other microbial communities in human 
papillomavirus infection and cervical cancer is still unclear.

Objective  This study aims to systematically review the existing literature and perform a meta-analysis to statistically 
evaluate the relationship between vaginal microbiota, human papillomavirus infection, cervical intraepithelial 
neoplasia, and cervical cancer at the genus level.

Methods  A comprehensive search of PubMed, Web of Science, and Embase databases was conducted to identify 
relevant studies. We synthesized data on the relative abundance of specific bacterial species associated with human 
papillomavirus status and cervical lesions. SPSS 25.0 was used to compare relative abundance among multiple 
groups.

Results  The meta-analysis included 17 observational studies published between 2019 and 2023, involving 2014 
participants from Asia, North America, and Africa. We found that specific vaginal microorganisms, such as Gardnerella, 
Prevotella, Sneathia, and Streptococcus, showed increased relative abundance with the severity of cervical lesions 
in human papillomavirus-negative, human papillomavirus-positive, cervical intraepithelial neoplasia, and cervical 
cancer patients. However, no statistically significant differences were found in that regard. Notably, Prevotella was 
significantly more abundant in cervical cancer patients compared to human papillomavirus-negative individuals. 
Sneathia was also found to be more abundant in cervical intraepithelial neoplasia and cervical cancer patients.
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Introduction
Cervical cancer (CC) is the fourth most common malig-
nant tumor among women worldwide, with a persistently 
high incidence and mortality rate globally. Approxi-
mately 660,000 new cases and 350,000 deaths occur every 
year, showing a trend of gradual increase and affecting 
younger populations, particularly in developing countries 
[1]. Despite the significant reduction in CC incidence in 
some countries due to the promotion of vaccination and 
screening programs, the disease remains prevalent in 
resource-limited areas [2].

The occurrence of CC is closely related to human pap-
illomavirus (HPV) infection, particularly HPV types 
16 and 18, which account for approximately 70% of CC 
cases [3]. Although HPV infection is widespread, only a 
small proportion of infections progress to CC, indicat-
ing that other factors also play significant roles in the 
pathogenesis of this disease. Abnormal immune func-
tion, genetic susceptibility, and dysregulation of the 
microenvironment are potential factors influencing the 
outcomes of infection [4–6]. In recent years, growing 
evidence suggests that microorganisms play a critical 
role in the occurrence and development of cancer. Per-
sistent infections caused by dysregulated microorganisms 
create a pro-inflammatory environment that promotes 
the occurrence of cancer [7–11]. Statistics indicate that 
approximately 15% of new cancer cases worldwide each 
year are attributable to infections [12]. Currently, six 
viruses and one bacterium have been definitively iden-
tified as the cause of cancer, namely HPV, hepatitis B 
virus (HBV), hepatitis C virus (HCV), Epstein-Barr virus 
(EBV), human T-cell lymphotropic virus type 1, Kaposi’s 
sarcoma-associated herpesvirus, and Helicobacter pylori 
[13].

With the advancement of human microbiome research, 
the role of microorganisms in human health and disease 
has gradually been recognized. The interactions between 
microorganisms and their hosts are complex and diverse, 
exerting widespread effects on physiological and patho-
logical processes in the human body. Particularly in the 
field of cancer, microorganisms have been found not 
only to participate in the occurrence and development of 
cancer but also to potentially influence the effectiveness 
of treatment [14]. Specifically, altering the composition 
of the microbiome, such as through the use of probiot-
ics, prebiotics, or microbial transplantation, may affect 
the tumor microenvironment and immune responses, 

thereby impacting the occurrence, progression, and ther-
apeutic efficacy of cancer. Supplementation with specific 
probiotics has been shown to improve the response rate 
of cancer patients to immune checkpoint inhibitors [15]. 
Similarly, in CC, changes in the composition and diver-
sity of the reproductive tract microbiota may influence 
the persistence of HPV infection and the progression of 
precancerous lesions [16]. Literature explicitly states that 
the absence of Lactobacillus can promote the develop-
ment of CC [17]. However, other microbial communities 
beyond Lactobacillus also play a role in the occurrence 
and progression of CC, but research on these microor-
ganisms is relatively limited.

Bacterial vaginosis (BV) is a common condition char-
acterized by an imbalance in the vaginal microbiota 
(VMB), typically associated with a decrease in beneficial 
Lactobacillus species and an increase in various anaero-
bic and facultative bacteria [18]. Multiple meta-analyses 
have demonstrated a close association between BV and 
CC, with a positive correlation to the severity of cervi-
cal lesions (such as HPV infection, cervical intraepithe-
lial neoplasia (CIN), and CC) [19–21]. Studies suggest 
that microorganisms associated with BV, such as Fuso-
bacterium, Leptotrichia, Prevotella, and Porphyromo-
nas, are linked to gynecological or other cancers. The 
carcinogenic substances they produce, along with their 
potential impact on chronic inflammation and immune 
modulation, increase the risk of developing tumors in 
women with BV [22]. In addition, BV may create a more 
favorable environment for the infection and integration 
of HPV into host cells by disrupting the vaginal barrier 
function, thereby promoting the persistence of HPV [23].

It is suggested antibiotics or antimicrobial agents tar-
geting specific microorganisms may also represent a 
new strategy for cancer treatment. However, research 
on specific harmful bacteria associated with CC remains 
limited. With the development of high-throughput 
sequencing technologies, such as 16  S rRNA gene 
sequencing, metagenomic sequencing, and single-cell 
sequencing, have provided powerful tools to understand 
the relationship between microorganisms and cancer. 
These technologies not only facilitate the identification 
of specific microbial species associated with CC but also 
reveal changes in microbial community structure and 
function, providing new biomarkers for disease diag-
nosis and treatment. Therefore, this study aims to sys-
tematically review the existing literature and perform 

Conclusions  The specific vaginal microbial species are associated with human papillomavirus infection status and 
the severity of cervical lesions that may have significant implications for the prevention and treatment strategies of 
cervical cancer.
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a meta-analysis to statistically evaluate the relationship 
between VMB, HPV infection, CIN, and CC at the genus 
level.

Methods
This study follows the PRISMA guidelines for sys-
tematic reviews and meta-analyses [24] and has been 
registered on PROSPERO (Registration Number: 
CRD42024583392). Since it does not involve human par-
ticipants or human-related data, ethical approval is not 
required.

Eligibility criteria
Inclusion criteria in this study were as follows: (1) Type 
of study included: observational studies; (2) Study popu-
lation: healthy population, HPV-infection, CIN, and CC 
patients; (3) Outcome measures: analysis of VMB with 
sequencing data. Exclusion criteria in this study were as 
follows: (1) Studies involving human cell lines or animal 
models; (2) Pregnant women or patients under the age 
of 18; (3) Patients with immunodeficiency disorders; (4) 
Non-English articles, reviews, or comments; (5) Lack of 
original data.

Search strategy
The electronic databases PubMed, Web of science, and 
Embase were searched from inception to July 2024 by 
using search terms in combination with both MeSH 
terms and free text for ((Human Papillomavirus Virus) 
OR (HPV) OR (Papillomavirus Virus, Human) OR 
(Virus, Human Papillomavirus) OR (Human Papil-
loma Virus) OR (Human Papilloma Viruses) OR (Papil-
loma Virus, Human) OR (Virus, Human Papilloma) OR 
(Human Papillomavirus) OR (Human Papillomaviruses) 
OR (HPV Human Papillomavirus) OR (HPV Human 
Papillomaviruses) OR (Human Papillomaviruses, HPV) 
OR (Human Papillomavirus, HPV) OR (HPV, Human 
Papillomavirus Viruses)) AND ((Microbiota) OR (VMB) 
OR (Microbiotas) OR (Microbial Community) OR (Com-
munity, Microbial) OR (Microbial Communities) OR 
(Microbial Community Composition) OR (Community 
Composition, Microbial) OR (Composition, Microbial 
Community) OR (Microbial Community Composi-
tions) OR (Microbiome) OR (Microbiomes) OR (Human 
Microbiome) OR (Human Microbiomes) OR (Microbi-
ome, Human) OR (Microbial Community Structure) OR 
(Community Structure, Microbial) OR (Microbial Com-
munity Structures)).

Study selection and data extraction
Three researchers (Yan Peng, Qin Tang, and Shiming 
Wu) independently screened the literature and extracted 
data according to pre-designed inclusion and exclusion 
criteria. Firstly, the titles were reviewed, and if relevant, 

the abstracts and full texts were examined. The inclusion 
of all literature was decided jointly by the three research-
ers. In case of disagreements, resolution was achieved 
through discussion or consultation with a senior 
researcher (Chengzhi Zhao). EndNote X9 was used to 
manage and screen the literature. The three research-
ers (Yan Peng, Qin Tang, and Shiming Wu) extracted 
data according to a pre-designed data extraction form, 
including (1) Basic characteristics of the included stud-
ies: publication year, author names, sample size, country, 
and study period; (2) Baseline characteristics of the study 
subjects: age, pregnancy status, immunodeficiency sta-
tus, HPV status, and cervical pathological status (based 
on cytology or histology); (3) Exposure factors: VMB 
sequencing data, with the relative abundance of domi-
nant bacterial species calculated.

Assessment of risk of bias
Two researchers (Yan Peng and Chengzhi Zhao) inde-
pendently assessed the risk of bias for each included 
study using the Newcastle-Ottawa Scale, a tool for evalu-
ating the quality of case-control studies in meta-analyses 
[25]. The scale includes four items related to the selection 
of study participants, one item on comparability between 
groups, and three items on the measurement of exposure 
factors. Except for the comparability item, which can 
score up to two points, all other items can score a max-
imum of one point. The total score ranges from 0 to 9, 
with higher scores indicating a lower risk of bias.

Data synthesis
The main outcomes of the study are the relationships 
between VMB and HPV negative, HPV positive, CIN, 
and CC, which are summarized separately in the meta-
analysis. Other factors were not analyzed. The cumula-
tive relative abundance of different dominant bacteria in 
each study was summarized weighted and expressed as a 
percentage. Due to the inevitable heterogeneity between 
studies, a random-effects model was used to combine 
the data, and effect sizes (rates) and the correspond-
ing 95% confidence intervals were calculated using Stata 
17.0. Heterogeneity between study results was analyzed 
using Cochran’s Q test, and the degree of heterogeneity 
was determined with I². If the Q test results were statis-
tically significant (P < 0.05), it indicated the presence of 
heterogeneity between the effect sizes of the included 
studies. If I² ≥ 50%, it suggested substantial heterogene-
ity between the effect sizes of the included studies. When 
heterogeneity tests indicate considerable heterogeneity 
among the included studies, further analysis of the source 
of heterogeneity and sensitivity analysis becomes more 
meaningful.

Data analysis was performed using SPSS 25.0 statisti-
cal software. The chi-square test or Fisher’s exact test 
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was used for comparison of rates among multiple groups, 
with P < 0.05 considered statistically significant.

Results
Study selection
A total of 992 relevant articles were initially identi-
fied. After excluding 455 duplicates, 465 articles were 
excluded based on the inclusion and exclusion criteria 
after reading the titles and abstracts. Subsequently, the 
full texts of 72 articles were reviewed, and finally, 17 

studies were included, all of which were observational 
studies. The literature selection process and results are 
shown in Fig. 1.

Study characteristics
A total of 17 studies were included, published between 
2019 and 2023. Among these 17 studies, 15 were con-
ducted in Asia [26–40], 1 in North America [41], and 1 
in Africa [42]. A total of 2014 participants were involved, 
including 557 healthy individuals, 839 HPV-positive 

Fig. 1  The study flowchart
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cases, 415 CIN cases, and 203 CC cases, with an average 
age range of 19 to 75 years. All studies performed 16  S 
rRNA sequencing of the VMB of the included partici-
pants and measured the relative abundance of dominant 
bacteria. The basic characteristics of the included studies 
are shown in Table 1.

Quality assessment
Table  2 lists the detailed results of the bias assessment 
according to the Newcastle-Ottawa Scale. Studies with a 
score of 7 or higher are considered high-quality studies 
(low risk of bias). Eight studies had a bias risk score of 9, 
seven studies had a bias risk score of 8, and the remaining 
two studies had a score of 7.

Synthesis of results
Atopobium with HPV, CIN, and CC
As shown in Fig. 2A, eight studies (n = 499) reported the 
relative abundance of Atopobium in the VMB of HPV-
negative healthy individuals. The pooled analysis resulted 
in an overall rate of 2% (95% CI = 0.01–0.03), with very 
low heterogeneity between studies (I²=0%). Eight studies 
(n = 436) reported the relative abundance of Atopobium 
in the VMB of HPV-positive individuals, with the pooled 
analysis showing an overall rate of 2% (95% CI = 0.01–
0.03) and very low heterogeneity between studies 
(I²=0%). Five studies (n = 221) reported the relative abun-
dance of Atopobium in the VMB of CIN patients, with 
the pooled analysis showing an overall rate of 4% (95% 
CI = 0.01–0.06), and very low heterogeneity between 
studies (I²=0%). Two studies (n = 89) reported the rela-
tive abundance of Atopobium in the VMB of CC patients, 
with the pooled analysis showing an overall rate of 3% 
(95% CI=-0.05-0.11) and low heterogeneity between 
studies (I²=21.42%). There was no significant difference in 
the relative abundance of Atopobium among the groups 
(P > 0.05) (Fig. 3).

Garderella with HPV, CIN, and CC
As shown in Fig. 2B, nine studies (n = 464) reported the 
relative abundance of Gardnerella in the VMB of HPV-
negative healthy individuals. The pooled analysis resulted 
in an overall rate of 5% (95% CI = 0.03–0.08), with low 
heterogeneity between studies (I²=30.43%). Ten stud-
ies (n = 675) reported the relative abundance of Gard-
nerella in the VMB of HPV-positive individuals, with 
the pooled analysis showing an overall rate of 8% (95% 
CI = 0.05–0.12) and low heterogeneity between studies 
(I²=42.25%). Five studies (n = 203) reported the relative 
abundance of Gardnerella in the VMB of CIN patients, 
with the pooled analysis showing an overall rate of 
10% (95% CI = 0.06–0.15), and very low heterogeneity 
between studies (I²=0%). Two studies (n = 89) reported 
the relative abundance of Gardnerella in the VMB of CC 

patients, with the pooled analysis showing an overall rate 
of 11% (95% CI = 0.05–0.18), and very low heterogeneity 
between studies (I²=0%). There was no significant differ-
ence in the relative abundance of Gardnerella among the 
groups (P > 0.05) (Fig. 3).

Megasphaera with HPV, CIN, and CC
As shown in Fig.  2C, five studies (n = 336) reported the 
relative abundance of Megasphaera in the VMB of HPV-
negative healthy individuals. The pooled analysis resulted 
in an overall rate of 1% (95% CI = 0.00-0.02), with very 
low heterogeneity between studies (I²=0%). Seven stud-
ies (n = 580) reported the relative abundance of Mega-
sphaera in the VMB of HPV-positive individuals, with 
the pooled analysis showing an overall rate of 2% (95% 
CI = 0.00-0.03) and low heterogeneity between studies 
(I²=19.95%). Six studies (n = 170) reported the relative 
abundance of Megasphaera in the VMB of CIN patients, 
with the pooled analysis showing an overall rate of 1% 
(95% CI = 0.00-0.02), and very low heterogeneity between 
studies (I²=0%). Two studies (n = 36) reported the relative 
abundance of Megasphaera in the VMB of CC patients, 
with the pooled analysis showing an overall rate of 0% 
(95% CI=-0.02-0.03), and very low heterogeneity between 
studies (I²=0%). There was no significant difference in the 
relative abundance of Megasphaera among the groups 
(P > 0.05) (Fig. 3).

Streptococcus with HPV, CIN, and CC
As shown in Fig.  2D, three studies (n = 278) reported 
the relative abundance of Streptococcus in the VMB of 
HPV-negative healthy individuals. The pooled analy-
sis resulted in an overall rate of 1% (95% CI = 0.00-0.03), 
with very low heterogeneity between studies (I²=0%). 
Five studies (n = 582) reported the relative abundance 
of Streptococcus in the VMB of HPV-positive individu-
als, with the pooled analysis showing an overall rate of 
1% (95% CI = 0.00-0.02) and low heterogeneity between 
studies (I²=15.34%). Five studies (n = 262) reported the 
relative abundance of Streptococcus in the VMB of CIN 
patients, with the pooled analysis showing an overall rate 
of 2% (95% CI = 0.01–0.04), and very low heterogeneity 
between studies (I²=0%). Two studies (n = 88) reported 
the relative abundance of Streptococcus in the VMB of 
CC patients, with the pooled analysis showing an overall 
rate of 3% (95% CI=-0.01-0.07), and very low heteroge-
neity between studies (I²=0%). There was no significant 
difference in the relative abundance of Streptococcus 
among the groups (P > 0.05) (Fig. 3).

Prevotella with HPV, CIN, and CC
As shown in Fig. 2E, nine studies (n = 428) reported the 
relative abundance of Prevotella in the VMB of HPV-
negative healthy individuals. The pooled analysis resulted 
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in an overall rate of 1% (95% CI = 0.00-0.02), with low 
heterogeneity between studies (I²=37.29%). Nine stud-
ies (n = 630) reported the relative abundance of Pre-
votella in the VMB of HPV-positive individuals, with 
the pooled analysis showing an overall rate of 3% (95% 
CI = 0.01–0.04) and very low heterogeneity between 
studies (I²=0%). Six studies (n = 224) reported the rela-
tive abundance of Prevotella in the VMB of CIN patients, 
with the pooled analysis showing an overall rate of 
4% (95% CI = 0.01–0.06), and very low heterogeneity 
between studies (I²=0%). Five studies (n = 194) reported 
the relative abundance of Prevotella in the VMB of CC 
patients, with the pooled analysis showing an overall rate 
of 6% (95% CI = 0.01–0.11), and moderate heterogeneity 
between studies (I²=55.95%). When comparing between 
groups, the relative abundance of Prevotella in the CC 
group was significantly higher than in the HPV-negative 
group (P < 0.05) (Fig. 3).

Sneathia with HPV, CIN, and CC
As shown in Fig.  2F, ten studies (n = 527) reported the 
relative abundance of Sneathia in the VMB of HPV-neg-
ative healthy individuals. The pooled analysis resulted 
in an overall rate of 0% (95% CI = 0.00–0.00), with very 
low heterogeneity between studies (I²=0%). Nine studies 
(n = 444) reported the relative abundance of Sneathia in 
the VMB of HPV-positive individuals, with the pooled 
analysis showing an overall rate of 0% (95% CI = 0.00-
0.01), and very low heterogeneity between studies 

(I²=0%). Seven studies (n = 263) reported the relative 
abundance of Sneathia in the VMB of CIN patients, with 
the pooled analysis showing an overall rate of 2% (95% 
CI = 0.00-0.04), and very low heterogeneity between stud-
ies (I²=0%). Five studies (n = 143) reported the relative 
abundance of Sneathia in the VMB of CC patients, with 
the pooled analysis showing an overall rate of 4% (95% 
CI = 0.01–0.07), and very low heterogeneity between 
studies (I²=0%). When comparing between groups, the 
relative abundance of Sneathia in the CIN and CC groups 
was significantly higher than in the HPV-negative and 
HPV-positive groups (P < 0.05) (Fig. 3).

Discussion
The results of this study indicate that specific vaginal 
microbial species are associated with HPV infection sta-
tus and the severity of cervical lesions. This provides a 
new perspective on the pathogenesis of CC and may have 
significant implications for the prevention and treatment 
strategies of CC. Firstly, our meta-analysis results show 
that specific vaginal microorganisms, such as Gardner-
ella, Prevotella, Sneathia, and Streptococcus, have a rela-
tive abundance that increases with the severity of cervical 
lesions in HPV-negative, HPV-positive, CIN, and CC 
patients. However, no statistically significant differences 
were found in that regard. Similarly, although Atopobium 
and Megasphaera are closely related to cervical lesions, 
no specific relationship between their abundance and the 
severity of cervical lesions was observed. Additionally, 

Table 2  Newcastle-Ottawa scale for risk of bias assessment
Study Selection Case-control 

comparability
Exposure Total 

score
Case 
definition

Case 
representativeness

Selec-
tion of 
controls

Defini-
tion of 
controls

Ascertain-
ment of 
exposure

Same ascer-
tainment for 
cases and 
controls

Nonre-
sponse 
rate

Chao 2019 1 1 1 1 2 1 1 1 9
Chen 2020 1 1 1 1 2 1 1 0 8
Chao 2020 1 1 1 1 1 1 1 0 7
Chorna 2020 1 1 1 1 2 1 1 1 9
Wei 2020 1 1 1 1 2 1 1 1 9
Wu 2020 1 1 1 1 1 1 1 1 8
Xie 2020 1 1 1 1 2 1 1 0 8
Yang 2020 1 1 1 1 1 1 1 1 8
Chao 2021 1 1 1 1 2 1 1 1 9
Kawahara 
2021

1 1 1 1 2 1 1 1 9

Zhang 2021 1 1 1 1 2 1 1 0 9
Mei 2022 1 1 1 1 1 1 1 1 8
Xia 2022 1 1 1 1 2 1 1 1 9
Li 2023 1 1 1 1 1 1 1 0 7
Liu 2023 1 1 1 1 1 1 1 1 8
Ma 2023 1 1 1 1 2 1 1 0 8
Teka 2023 1 1 1 1 2 1 1 1 9
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there were no significant differences in the relative abun-
dance of Atopobium, Gardnerella, Megasphaera, and 
Streptococcus among the groups. This suggests that these 
microorganisms may not be major driving factors in the 
development of CC, or their effects may be masked by 
other factors.

However, it is worth noting that the relative abundance 
of Prevotella in CC patients is significantly higher than in 
the HPV-negative group, which may suggest its poten-
tial role in the development of CC. This finding is con-
sistent with previous research results [16, 43–44], which 
indicate that Prevotella is associated with an increased 
risk of CC. Specific microbial species may increase the 
risk of CC through the production of carcinogenic sub-
stances, the induction of chronic inflammation, and 
potential immune modulation effects. Dong [45] con-
ducted a study on 920 women and found that the rela-
tive abundance of Prevotella in the vagina of women with 
persistent HPV16 and HPV18 infections was significantly 
increased. The overgrowth of Prevotella in the vagina 
may promote the persistent infection of high-risk HPV 
through host NF-κB and C-myc signaling pathways, 
leading to the development of cervical lesions. However, 
further research is needed to verify this association and 
explore how Prevotella influences the development of 
CC.

Secondly, the relative abundance of Sneathia in CIN 
and CC patients is significantly higher than in the HPV-
negative and HPV-positive groups. This result suggests 
that Sneathia may play a role in the progression of cer-
vical lesions. Sneathia is a microorganism associated 
with BV, which is related to the imbalance of the vaginal 
microenvironment. The presence of Sneathia is positively 
correlated with the diagnostic criteria for BV [46–48]. BV 
is associated with an increased risk of HPV infection and 
cervical cancer [19–21]. BV may promote the persistent 
presence of HPV by disrupting the vaginal barrier func-
tion, creating a more favorable environment for HPV 
infection and integration into host cells [23]. Therefore, 
the increase of Sneathia may reflect the impact of vagi-
nal microenvironment imbalance on the development 
of CC. Specifically, Sneathia can adhere to cervical epi-
thelial cells, causing changes in cell morphology and dis-
ruption of intercellular contacts [49–50]. Sneathia may 
increase local inflammation and tissue damage by dis-
rupting the stability and integrity of the cervical epithelial 
cell, thereby increasing the risk of HPV infection and CC. 
However, as an emerging pathogen, the role of Sneathia 
in female health and disease is often underestimated. 
More attention and research are needed in the future to 
fully understand its role in disease development and to 
develop effective diagnostic, treatment, and prevention 
strategies.

Fig. 2  Forest plots between Atopobium (A), Garderella (B), Megasphaera 
(C), Streptococcus (D), Prevotella (E), Sneathia (F), and human papilloma-
virus negative (HPV-), human papillomavirus positive (HPV+), cervical in-
traepithelial neoplasia (CIN), and cervical cancer (CC)
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Gardnerella vaginalis is a well-known pathogen asso-
ciated with BV, it is capable of adhering to vaginal epi-
thelial cells and forming biofilms, which can create a 
favorable environment for the colonization of other 
anaerobic bacteria (such as Sneathia, and Prevotella) [46]. 
Although our meta-analysis did not find a significant dif-
ference in the relative abundance of Gardnerella across 
different groups, its role in BV cannot be neglected. BV 
is characterized by an imbalance of the vaginal microbi-
ome and a characteristic biofilm formed on the vaginal 
epithelium, which is initiated and dominated by Gard-
nerella bacteria, creating an anaerobic environment [51]. 
Sneathia and Prevotella then thrive in this altered niche, 
producing enzymes and toxins that cause inflammation 
and tissue damage. These bacteria interact synergistically, 
exacerbating dysbiosis and weakening the mucosal bar-
rier. Their combined effects promote chronic inflamma-
tion, increase susceptibility to infections like HPV, and 
may drive the progression of cervical lesions.

Our study also has some limitations. Firstly, due to the 
limited number of included studies, we were unable to 
analyze all possible vaginal microorganisms. Addition-
ally, this study did not consider other factors that may 
influence the composition and function of the VMB, such 
as the host’s lifestyle, dietary habits, and genetic factors. 

These variables are known to play significant roles in 
shaping the microbiota and may also influence the rela-
tionship between VMB and cervical diseases. Future 
studies should aim to control for these factors to provide 
a more comprehensive understanding of the underlying 
mechanisms. Similarly, the generalizability of our find-
ings may be limited by the geographic and ethnic compo-
sition of the included studies. Of the 17 studies included 
in our meta-analysis, 15 were conducted in Asian popu-
lations. This overrepresentation of a single ethnic group 
may restrict the applicability of our results to other 
ethnicities and environments. The VMB can vary sig-
nificantly across different populations due to genetic, 
environmental, dietary, and lifestyle differences. There-
fore, caution should be exercised when extrapolating 
our findings to non-Asian populations. Future research 
should include more diverse cohorts better to understand 
the global implications of VMB in cervical diseases. Sec-
ondly, the heterogeneity between studies may affect the 
interpretation of the results. Although we used a random 
effects model to combine the data and performed hetero-
geneity tests, the sources of heterogeneity still need fur-
ther exploration. Thirdly, our study did not specifically 
restrict the definition of HPV to oncogenic (high-risk) 
types, such as HPV 16 and 18, which are most strongly 

Fig. 3  Comparison of the relative abundance of Atopobium, Garderella, Megasphaera, Streptococcus, Prevotella, and Sneathia among different groups. 
Human papillomavirus negative (HPV-), human papillomavirus positive (HPV+), cervical intraepithelial neoplasia (CIN), and cervical cancer (CC), *P<0.05
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associated with CC development. Consequently, we were 
unable to precisely delineate the relationship between 
high-risk HPV infections and the VMB, which is criti-
cal for elucidating their role in CC. Future studies should 
focus on high-risk HPV types to provide more targeted 
insights into this relationship. Furthermore, we included 
all studies related to CIN (both LSIL and HSIL) without 
further stratification. While this approach provides a 
comprehensive overview, it may limit the accuracy with 
which we can interpret the variations in the relative abun-
dance of specific VMB across different stages of cervical 
lesions. Future studies should consider refining the analy-
sis to specifically investigate the relationship between 
LSIL, HSIL, and VMB to more accurately elucidate their 
roles in CC development. Lastly, due to the limitations of 
the study design, we were unable to determine the causal 
relationship between the VMB, HPV infection, and CC. 
Future research should adopt prospective designs with 
larger sample sizes to validate our findings and explore 
the relationship between the microorganism and the 
development of CC.

Conclusion
In conclusion, our findings emphasize the potential role 
of specific bacterial species in the VMB in the devel-
opment of CC and provide a new direction for future 
research. By further exploring the relationship between 
the VMB, HPV infection, and CC, we can gain a better 
understanding of the pathogenesis of CC and develop 
new prevention and treatment strategies. Future stud-
ies need to further investigate the specific mechanisms 
through which particular microbial species contribute to 
the development of CC and assess the potential effects of 
modulating the VMB for the prevention and treatment of 
CC.
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