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Abstract 

Background Many national malaria elimination programmes (NMEP) are intensifying campaigns for malaria control 
and elimination. However, these efforts are constrained by the high prevalence of subclinical infections which may 
sustain local disease transmission. Detection and treatment of these subclinical and low-density infection is therefore 
crucial in monitoring progress towards malaria control and elimination. This study sought to determine the burden 
of subclinical infections in three districts in Ghana, the proportion that could be detected by rapid diagnostic test 
(RDT), and the occurrence of hrp2/hrp3 deletions which may impede diagnosis by HRP2-based RDTs.

Methods A community-based, cross-sectional study was conducted in the Nkwanta South, Sekyere South, and Ga 
South districts in Ghana. A total of 1134 whole blood samples were screened for malaria using HRP2-based rapid diag-
nostic test (RDT), expert microscopy, and varATS qPCR. Three hundred and four (304) P. falciparum positive samples 
were typed for hrp2/hrp3 deletions by digital PCR (dPCR).

Results Parasite prevalence was 57.1% by qPCR, 40.9% by RDT, and 8.4% by microscopy. Approximately, 33.8% 
(219/647) of infections were sub-patent. Compared to qPCR, the sensitivity of RDT was 65.7%, and specificity 91.9%, 
making it significantly more sensitive than microscopy (sensitivity 14.4%, specificity 99.4%). Parasite prevalence 
was highest in children aged 5–15 years (68.2%), followed by adults > 15 years (51.2%) and children < 5 years (45.3%). 
Prevalence also differed across the three districts, ranging from 44.0% (183/416) in Sekyere South, 55.8% (143/253) 
in Ga South, to 68.8% (321/466) in Nkwanta South. No hrp2 deletions were observed, and one sample (1/304) 
from Nkwanta South district carried hrp3 deletion.

Conclusion The high prevalence of subclinical malaria infections is likely to be a potential reservoir in sustaining 
malaria transmission. HRP2-based RDTs detected two-thirds of the subclinical infections. Given the absence of hrp2 
deletions, community testing and treatment programs using highly sensitive HRP2-based RDTs could be a valu-
able strategy in detecting the parasite reservoir and potentially help in ensuring a sustainable decline in disease 
transmission.
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Background
Malaria is one of the most devastating parasitic diseases 
globally. Despite the great strides made towards control-
ling malaria, the disease was responsible for over 263 mil-
lion clinical cases and 597,000 associated deaths in 2023, 
with 94% of the cases reported in WHO African Regions 
[1]. In Ghana, the National Malaria Elimination Pro-
gramme (NMEP) has increased efforts to disrupt malaria 
transmission and reduce morbidity. The distribution of 
insecticide-treated bed nets (ITN), indoor residual spray-
ing (IRS), larviciding, intermittent preventive treatment 
with sulfadoxine pyrimethamine (IPTp-SP) in pregnancy, 
and the use of artemisinin-based combination therapies 
have been effective in reducing the malaria morbidity and 
mortality rate by 48.7% from 2011 to 2019 [2]. This not-
withstanding, malaria remains the leading cause of hos-
pitalization and is responsible for over 30% of out-patient 
attendances [2]. Plasmodium falciparum mono-infection 
is the predominant malaria infection type accounting for 
a national average of 98% with P. ovale and P. malariae 
mono and mixed infections with Plasmodium falciparum 
sharing the remaining 2% [3–6].

Subclinical and low-density infections are common 
across all age groups, and play a critical role in sustain-
ing a large proportion of malaria transmission [7–9]. 
Sustained malaria transmission in endemic areas could 
be attributed to a significant proportion of subclinical 
infections. Several studies found that 95% of transmis-
sion originates from reservoirs that do not exhibit fever 
or any acute clinical symptoms [10–13]. The detection 
and treatment of these subclinical infections is therefore 
crucial for malaria control [11, 14].

A large number of subclinical infections are charac-
terized by low parasite density. Community and house-
hold-based surveillance of subclinical infections as well 
as point-of-care (POC) detection of malaria, to a great 
extent, rely on rapid diagnostic tests (RDT) and  light 
microscopy. Due to their limited sensitivity and scarcity 
of trained microscopist, microscopy and RDTs underes-
timate the true burden of subclinical infections [15, 16]. 
Unlike RDT, the accuracy of light microscopy is depend-
ent on the expertise of the microscopist examining the 
slides [17]. As a result, light microscopy is reported to 
have a varying limit of detection of about 50 to 500 para-
sites/µL [18–20]. The latest generation of RDTs achieves 
a limit of detection of < 50 parasites/µL [21].

The most sensitive RDTs for P. falciparum detection 
rely on the detection of the HRP2 and HRP3 proteins. 
Deletions of the hrp2 and/or hrp3 genes have been 
reported in several countries, particularly in the Horn of 
Africa [22, 23] and South America [24, 25], where they 
pose a significant obstacle to malaria control. In Ghana, 
deletion frequency appears to be low [4, 26].

To date, studies about the burden and prevalence of 
subclinical infections and the challenge associated with 
their detection in Ghana are sparse. As Ghana is transi-
tioning into malaria elimination phase, a comprehensive 
understanding of the prevalence of subclinical malaria 
infections is necessary to track progress and guide 
national policy. In this study, we assessed the prevalence 
of subclinical malaria infections by qPCR and HRP- 2 
based RDTs, and the occurrence of hrp2/hrp3 gene dele-
tions in three regions of Ghana.

Methods
Definition of terms
Subclinical malaria infection, herein, was defined as Plas-
modium falciparum positive individual or case without 
fever (i.e. temperature ≤ 37.5 °C) at the time of sampling 
as well as the absence of any malaria related symptoms 
[27]. Subpatent malaria infections were defined as infec-
tions exclusively detected (positive) by varATS qPCR 
[28].

Study areas and population
The study was conducted at three districts/regions in 
Ghana; Afamananso in Sekyere South District (Ashanti 
Region), Obom in Ga South (Greater Accra Region) 
and Gekrong, Pawa, Nsuogya, and Keri (Nkwanta South 
Municipal) in the Oti Region of Ghana (Fig. 1). Sekyere 
South District (latitude 6° 50’N and, longitude 1° 40’W) is 
one of the 43 districts in the Ashanti region of Ghana and 
located about 40 km away from Kumasi on the Kumasi-
Mampong road. Sekyere South has a population of 
120,076 distributed into 29,892 households [29] . The Ga 
South district lies within latitude 5°35’N and longitude 
0°10’ W and occupies a land area of 284.08 square kilom-
eters with about 412 communities. Ga South has a popu-
lation of 350,121 while Nkwanta South Municipal in Oti 
region occupies a land area of 2,473 square kilometers 
with a population of 135,936 [29]. The rural population 
together with the urban dwellers in the Nkwanta district 
are distributed in about 22,429 households with an aver-
age household size of 4.2 persons [29].

Study design and sample collection
Cross-sectional, community-based surveys were con-
ducted at different time points in the aforementioned 
areas. Samples were obtained in Sekyere South from 
December 2020 to January 2021 while data were col-
lected from Nkwanta South and Ga South in October and 
July, 2021 respectively. Prior to the commencement of the 
study, opinion leaders in each community were engaged 
where aims and procedures of the study were explained 
clearly in layman’s term. Upon visiting the communities, 
persons of all age groups, both male and females, were 
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invited to take part in the study. Written informed con-
sent was obtained from all participants aged 18 and older. 
For participants younger than 18, consent was obtained 
from a parent or guardian. The temperature of each par-
ticipant was measured using infrared thermometers. Two 
milliliter of venous blood was obtained from consenting 
participants into EDTA tubes by trained phlebotomists. 
Thick and thin blood smears were prepared for micros-
copy and RDT diagnosis performed. An aliquot of 200 µL 
of whole blood was pipetted into 1.5 ml Eppendorf tubes 
and transported on ice to the Vector-Borne Infectious 
Disease laboratory at Kwame Nkrumah University of Sci-
ence and Technology (KNUST), Kumasi, Ghana for stor-
age in − 80° C freezer until they were needed for further 
laboratory analysis.

Sample processing and laboratory investigations
Rapid diagnostic test
The Biocredit Malaria Ag Pf (pLDH/HRPII) RDT (lot 
no: HOO6 C007D) manufactured by Rapigen, Inc. was 

used to diagnose Plasmodium falciparum in the study. In 
addition to the control band, the test kit has two bands 
(HRP2 and pLDH), allowing for the phenotypic detection 
of potential hrp2/hrp3 deletions. The performance of this 
RDT has been evaluated before, and it was found to be 
more sensitive than AccessBio Carestart Malaria Pf RDT, 
the test routinely used by the Ghana NMCP [21]. The 
test kit was used according to the manufacturer’s proto-
col and results recorded after 15–20 min. In case an RDT 
showed very faint bands, the test was repeated.

Microscopy
Thick and thin blood films were prepared. The thin 
blood film (2μL) was fixed with absolute methanol. 
Blood smears were stained with 10% Giemsa solution 
and examined under light microscope by two expert 
microscopists. Parasites were quantified after counting 
200 or 500 White Blood Cells (WBC) [30, 31]. A slide 
was declared negative when no malaria parasite was 
seen after scanning 100 high power fields (HPFs) [32]. 

Fig. 1 Map showing the different study sites



Page 4 of 9Mutala et al. BMC Infectious Diseases          (2025) 25:543 

The parasites quantified were expressed as parasite per 
microliter of blood.

DNA extraction, varATS qPCR, and hrp2/3 deletion typing
DNA extraction, varATS qPCR and hrp2/3 deletion typ-
ing were performed at the University of Notre Dame, 
USA. Genomic DNA was extracted from 100µL of blood 
using the Macherey–Nagel Nucleomag extraction kits 
(Düren, Germany) and eluted in equal volume of elution 
buffer. qPCR was performed on ThermoFisher QuantS-
tudio 3 instrument in a total reaction volume of 12 µL, 
including 4 µL of DNA. The multicopy varATS gene was 
amplified. This gene is present in approximately 60 copies 
per parasite genome, of which approximately 20 copies 
are amplified [28]. To obtain absolute density estimates, 
dilution series of cultured NF54 P.falciparum parasites 
quantified by dPCR were run along field samples.

Samples positive for P. falciparum and with a Ct value 
of ≤ 28 were typed for deletion of the hrp2 and hrp3 
genes by digital PCR [33]. In the absence of the hrp2 gene, 
anti-HRP2 antibodies also recognize the HRP3 protein, a 
structural homolog that shares numerous epitopes with 
HRP2 [34]. In the dPCR assay, primers targeting hrp2 or 
hrp3 genes are multiplexed with an assay targeting ser-
ine-tRNA ligase (PF3D7_0717700) as control. The ratio 
of positive partitions of hrp2/hrp3 to tRNA indicates the 
presence or absence of hrp2 or hrp3. For the analysis of 
dPCR assay, a minimum of five droplets positive for the 
reference (tRNA) gene were considered. Samples were 
re-run if deletion were recorded but ≤ 5 positive droplets 
were observed for the reference gene.

Data analysis
Data was analyzed using GraphPad Prism 8.0 (San Diago, 
California), Stata 17 (Stata Corp. LLC, College Station, 
Texas, USA) and IBM SPSS Version 27 (Armonk, New 
York). Binary logistic regression was used to assess the 
association of potential risk factors (age, sex temperature 
and community) with qPCR results. Prevalence between 
age groups was compared using the chi-square (χ2)-test. 
Five percent (5%) level of significance was used for all sta-
tistical tests.

Results
Sociodemographic characteristics of the study population
A total of 1,134 participants were recruited for the study. 
These included 466 (41.1%) from Nkwanta South, 416 
(36.7%) from Sekyere South, and 252 (22.2%) from Ga 
South districts (Table 1). Among the participants, 63.6% 
(n = 720) were female, with a median age of 19 years 
(IQR = 10–43). Adults > 15 years of age made up 56.8% 
(n = 644) of the participants, followed by 5–15 years 
(36.6%, n = 415). Approximately 68.7% (n = 781) of the 

participants reported to own an insecticide treated 
bed net (ITN), and among them, 40.1% (n = 313/781) 
reported usage of the ITN 24 h prior to the study 
(Table  1). The use of the ITN was significantly lower in 
school-aged children 5–15 years (23.8%; n = 99/415) 
compared to young children < 5 years 30.9% (n = 23/75) 
and adults 29.6% (n = 191/644) (X2 = 6.2; P = 0.04).

P. falciparum prevalence by qPCR, microscopy, and RDT
The prevalence of P. falciparum in this study was 57.1% 
(n=  647/1134) by qPCR., 40.9% (n=  464/1134) by RDT, 
and 8.4% (n= 96/1134) by microscopy. Of the 464 RDT-
positive cases, PfHRP2 was detected in all of them; in 
48.5% (n= 225/464) of RDT-positive cases, both PfHRP2 
and pLDH were detected. Prevalence by qPCR was high-
est in Nkwanta South at 68.8% (n = 321/466), followed by 
Ga South 55.8% (n = 143/252) and Sekyere South 44.0% 
(n = 183/416) (X2 = 55.6, P < 0.0001). The prevalence was 
highest in children aged 5–15 years (68.2%, n=283/415) 
compared to young children < 5 years (45.3%, n= 34/75) 
and adults > 15 years (51.2%, n= 330/644) (X2 = 34.1, P < 
0.0001). 33.8% (n=  219/647) of infections were exclu-
sively detected by qPCR. The proportion of sub-patent 
infections was highest in adults > 15 years 46.7% (n = 
154/330), followed by 23.5% (n = 8/34) in young children 
< 5 years and 20.1% (n = 57/283) in children aged 5–15 
years.

Compared to qPCR, the sensitivity of the HRP2-based 
RDT was 65.7% (95% CI 62.92%—68.45%), and sensitiv-
ity of microscopy was 14.37% (95% CI 12.33%–16.42%) 

Table 1 Baseline characteristics of study participants

Characteristics N (%) Parasite Prevalence 
by qPCR n(%)

P value

Sex
 Female 720 (63.6%) 392 (54.4%) 0.02

 Male 414 (36.5%) 255 (61.6%)

Age (years)
 < 5 75 (6.6%) 34 (45.3%)

 5–15 415 (36.6%) 283 (68.2%)  < 0.0001

 > 15 644 (56.8%) 330 (51.2%)

ITN Ownership
 Yes 781 (68.7%) 453 (58.0%) 0.22

 No 353 (31.1%) 194 (54.9%)

ITN usage
 Yes 313 (40.1%) 145 (46.3%)  < 0.0001

 No 468 (59.9%) 278 (59.4%)

Study site
 Nkwanta South 466 (41.1%) 321 (68.8%)

 Sekyere South 416 (36.7%) 183 (44.0%)  < 0.0001

 Ga South 253 (22.2%) 143 (55.8%)
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(Table  2). The sensitivity of RDT and microscopy also 
varied across the different study areas. RDT was highly 
sensitive in Nkwanta South (80.94%; 95%CI 70.26%—
84.86%), followed by Sekyere South (57.38%; 95 CI 
50.13%—64.32%) and Ga South (42.66%; 95 CI 37.06%—
48.45%). In contrast, microscopy demonstrated poor sen-
sitivity in Nkwanta south (18.07; 95 CI 14.25%—22.65%), 
Sekyere South (12.57%; 95 CI 8.52%—18.15%) and Ga 
South (15.48%; 95%CI 10.63%—22.01%). Figure 2 shows 
parasite densities of RDT and microscopy positive and 
negative samples. 91.6% (n = 425/464) of samples identi-
fied as positive by RDT and 96.8% (n = 93/96) by micros-
copy were also positive by qPCR.

Infections that were detected by all three tests had 
significantly higher geometric mean parasite density (n 

= 90, 1619 parasite/µL; 95% CI 1007—2603) as compared 
to samples that were detected by qPCR only (Geomet-
ric mean = 1.21 parasite/µL; 95%CI 0.78–1.87) (Fig.  2). 
The geometric mean parasite density of the RDT posi-
tive samples (1.31 parasites/µL; 95% CI 50.81–100.1) 
was almost 70-fold higher than RDT negative but qPCR 
positive samples (0.89 parasites/µL; 95% CI 0.61–1.30) 
(Fig. 2).

Risk factors associated with subclinical infection
In logistic regression analysis, there was no significant 
association between gender and malaria infection. The 
temperature (OR 1.84 95%CI 1.07–3.19) and the dis-
trict from which a participant was sampled were strong 
predictors of infection. The > 15 years age group (OR 
2.13 95%CI 1.60–2.83) was significantly associated with 
malaria infection when compared to children < 5 years 
old (Table  3). Individuals who reported usage of insec-
ticide treated nets 24 h prior to the study had lower 
odds of malaria infection (OR 0.54 95% CI 0.421–0.714) 
(Table 3).

Plasmodium falciparum hrp2/hrp3 deletion typing by dPCR
Deletion typing was conducted on 304 samples (166 from 
Nkwanta South, 86 from Ga South, and 52 from Sekyere 
South). For both hrp2/hrp3 typing, 98.7% (n = 300) of the 
samples met the inclusion criteria of ≥ 5 partitions posi-
tive for tRNA. No hrp2 deletion were observed. One of 
the isolates from Nkwanta South district in Oti region 

Table 2 Diagnosis accuracy of RDT and microscopy using qPCR 
as reference standard

RDT: rapid diagnostic test, C.I: confidence interval, qPCR: quantitative polymerase 
chain reaction

RDT Microscopy

Sensitivity % (95% C.I) 65.7% (62.9—68.5) 14.4% (12.3–16.4)

Specificity% (95% C.I) 92.% (90.4–93,6) 99.4% (98.9–99.8)

Positive Predictive value% (95% 
C.I)

91.4% (90.0–93.2) 96.9% (95.8–97.9)

Negative Predictive value% 
(95% C.I)

66.9% (64.9–69.6) 46.6% (43.7–49.5)

Fig. 2 Parasite density of samples determined by the combination 
of RDT, microscopy and varATS qPCR. Y-axis shows the log10 parasite 
density of the samples, while the X-axis represents the different 
combinations of diagnostic techniques. Error bars (red lines) show 
the mean and standard deviation (SD)

Table 3 Logistic regression for potential risk factors associated 
with qPCR detectable malaria

P value > 0.05 significant, OR: Odds ratio, District: various sampling areas

OR P value 95% CI

Lower Upper

Age (years)
 < 5 Ref

 5–15 0.763 0.232 0.490 1.189

 > 15 2.127  < 0.0001 1.600 2.829

Gender
 Male Ref

 Female 1.217 0.154 0.929 1.595

District
 Sekyere South Ref

 Ga South 0.492  < 0.0001 0.350 0.692

 Nkwanta South 0.272  < 0.0001 0.202 0.367

Temperature 1.846 0.028 1.069 3.188

ITN usage
 No Ref

 Yes 0.548  < 0.0001 0.421 0.714
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examined carried a deletion of the hrp3 gene. Figure  3 
shows the plot of wild-type samples and the sample with 
deletion of hrp3 gene.

Discussion
In this study, the prevalence of subclinical P. falciparum 
infection was determined using microscopy, RDTs of the 
latest generation, and qPCR. By qPCR, 57% of the pop-
ulation tested positive. Light microscopy showed very 
poor sensitivity (14%). This finding is consistent with ear-
lier studies that reported considerable prevalence of the 
parasite reservoir in the form of subclinical infections 
across sub-Saharan Africa [3, 35–37]

The ultrasensitive RDT used in the present study 
detected about two-thirds of infections and may therefore 
offer possibilities for shrinking the reservoir of subclini-
cal infections e.g. through mass testing and treatment 
(MTAT), reactive case detection (RCD), or focal test and 
treat (FTAT) programs in Ghana. Subclinical infections 

were shown to be the major source of transmission in 
several countries [10, 13]. Their ability to infect mosqui-
tos greatly depends on their gametocyte density, which 
depends on parasite density [38]. In mosquito feeding 
experiments, very low parasite density samples did not 
infect mosquitos [39]. A study in Uganda found that sub-
clinical infections were the source of > 99% of infected 
mosquitos [10], yet, submicroscopic infections were 
the source of only approximately 15% of transmission. 
The sensitivity of the RDT (65.7%) in the current study 
exceeded the sensitivity of microscopy (14.37%). Thus, 
using this RDT in a well-designed program to screen for 
submicroscopic infections and administer treatment to 
those testing positive, presumably a large proportion of 
the subclinical infectious reservoir could be cleared.

The sensitivity of HRP2-based RDTs could be affected 
by deletions of hrp2/3 genes. In this study, no hrp2 dele-
tions were observed, and one sample carried hrp3 dele-
tion, corroborating previous reports of low deletion 

Fig. 3 Plot of hrp3 deletion typing by dPCR. Bottom right: Partitions positive for tRNA (control gene) are shown in dark blue. Bottom left: Negative 
partitions for both target and tRNA are shown in gray. Top left: Partitions positive for the target gene are shown in yellow. Top right: Partitions 
positive for both target and tRNA are shown in light blue. A Wild type sample with no deletion. B hrp3 deletion sample: Droplets positive for tRNA 
(control), but no droplets are positive for the target gene (hrp3)
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frequency in Ghana [26, 40]. Hence, HRP2-based RDTs 
remain an appropriate tool to detect P. falciparum infec-
tions in Ghana.

Consistent with previous studies, the prevalence of 
infection was higher in school age children (5–15 years) 
compared to young children < 5 years and adults > 15 
years, and they may serve as an important reservoir for 
onward parasite transmission [30, 41]. These patterns can 
be explained by the frequent exposure of adolescents to 
the parasite and the gradual acquisition of immunity in 
older individuals [42, 43]. Beyond the partial immunity 
acquired, school-aged children are frequently exposed 
to outdoor biting vectors since they typically spend more 
time outdoors compared to young children.

The high prevalence of subclinical infections is likely 
a result of the limited utilization of preventive interven-
tions such as insecticide treated nets (ITN) as observed 
in this study [44]. In Ghana, ITNs are distributed to all 
regions across the country especially in endemic com-
munities as well as antenatal and Child welfare clin-
ics [45]. This study showed that over two-thirds of the 
participants possessed an ITN but less than half of 
them reported usage prior to the study. Individuals who 
reported usage of ITN had reduced likelihood of being 
infected, corroborating the vital role it plays in prevent-
ing malaria infections. Previous studies indicated that the 
use of ITNs has been crucial in reducing malaria cases in 
Ghana by approximately 68% since the year 2000 [46, 47].

Conclusion
The current study found a high prevalence of subclinical 
infections by qPCR. Periodic reassessment of the burden 
and distribution of subclinical infections may be of cru-
cial importance to strengthen malaria surveillance and 
monitor control/elimination progress. No hrp2 deletions 
were detected, thus HRP2-based RDTs remain efficient 
for P. falciparum detection in Ghana. The highly sensitive 
RDT used in this present study detected two thirds of the 
infections. Screen-and-treat campaigns using these RDTs 
could be a vital tool in Ghana’s malaria surveillance cam-
paign and to accelerate progress towards malaria control 
and elimination.
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