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Abstract 

Background Predicting which patients will develop severe COVID‑19 complications could improve clinical care. 
Peripheral blood cytokine profiles may predict the severity of SARS‑CoV‑2 infection, but none have been identified 
in US Veterans.

Methods We analyzed peripheral blood cytokine profiles from 202 participants in the  EPIC3 study, a prospective 
observational cohort of US Veterans tested for SARS‑CoV‑2 across 15 VA medical centers. Illness severity was assessed 
based on the highest level documented during the first 60 days after recruitment. We correlated cytokine levels 
with illness severity using LASSO logistic regression, random forest, and XGBoost models on a 70% training set 
and calculated the AUC on a 30% test set.

Results LASSO regression identified 6 cytokines as predictors of SARS‑CoV‑2 severity with 77.3% AUC in the test set. 
Random forest and XGBoost models achieved an AUC of 80.4% and 80.7% in the test set, respectively. All models 
assigned a feature importance to each cytokine, with IP‑10, MCP‑1, and HGF consistently identified as key markers.

Conclusions Cytokine profiles are predictive of SARS‑CoV‑2 severity in US Veterans and may guide tailored interven‑
tions for improved patient management.
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Introduction
COVID-19, caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), is an infectious disease that 
has achieved global reach. The COVID-19 pandemic has 
had a significant impact on the United States, resulting in 
over 1.1 million fatalities across the country [1]. Within 
the Veterans Health Administration (VHA), which is 
among the largest integrated health care systems in the 
U.S., over 870,000 infections with SARS-CoV-2 and 
approximately 24,000 deaths were attributed to COVID-
19 [2–4].

The clinical manifestations of COVID-19 are diverse. 
Although most patients experience symptoms that range 
from mild to moderate, approximately 15% of patients 
develop severe pneumonia, and of these, around 5% 
require admission to the intensive care unit (ICU) due 
to acute respiratory distress syndrome (ARDS), septic 
shock, or multiple organ dysfunction, often resulting in 
high fatality rates [5]. Two significant prognostic chal-
lenges are the insufficient identification of key cytokines 
associated with lethal outcomes and the difficulty in pre-
dicting which patients are at increased risk of developing 
severe illness and death [6].

Individuals suffering from severe SARS-CoV-2 infec-
tion often develop cytokine storm, which is a promi-
nent feature that is linked with poor clinical outcomes 
and multiple organ dysfunction syndrome [7]. Recent 
research has identified cytokines such as MCP-3, IP-10, 
and IL-6 as reliable indicators for the advancement of 
COVID-19 [6]. Although current hospital diagnos-
tics and variables like comorbidities and age help assess 
COVID-19 severity, they have limited ability to capture 
immune response heterogeneity, which is a key driver 
of disease progression. Severe SARS-CoV-2 infection 
marked by hyperinflammation and immune exhaustion 
can precede clinical deterioration, such as hypoxemia 
and organ failure. Cytokine profiling enables earlier risk 
detection and may allow for timely intervention. Moreo-
ver, unlike static risk factors, cytokine-based models can 
offer more personalized risk assessment and help guide 
targeted treatments. Identifying cytokine biomarkers for 
severe SARS-CoV-2 infection may enhance clinical deci-
sion-making and patient care by enabling early identifi-
cation and tailored intervention for those at greatest risk 
[8].

The  EPIC3  (Epidemiology, Immunology, and Clinical 
Characteristics of COVID-19) study, conducted within 
the Veterans Health Administration (VHA), is dedicated 
to detailing the epidemiological patterns and the natural 
progression of SARS-CoV-2 among the Veteran popula-
tion. It further seeks to evaluate the relationship between 
host and viral elements and the intensity of the infec-
tion, as well as the emergence of immunity over time. 

In this manuscript, we present findings concerning the 
highest level of illness severity within the initial 60 days 
after recruitment. Participating Veterans contributed 
data by completing questionnaires, either conducted as 
interviews or filled out by the Veterans themselves, and 
by providing biospecimens; clinical data assessment 
was conducted accessing comprehensive VHA Elec-
tronic Health Records (EHR) [9]. Utilizing a subset of 
the broader  EPIC3 study participants and leveraging the 
combination of the questionnaire, EHR, and biospecimen 
data, we identified a host cytokine profile that indepen-
dently predicted SARS-CoV-2 infection severities.

Methods
Registration
The  EPIC3 study is registered on ClinicalTrials.gov (NCT 
number: NCT05764083). More details regarding the reg-
istration can be found at  https:// clini caltr ials. gov/ study/ 
NCT05 764083# more- infor mation.

Study design
EPIC3 is a prospective, observational cohort study. From 
July 2020 to September 2022, it enrolled Veteran inpa-
tient and outpatient participants across 15 Veterans 
Affairs medical facilities. The  EPIC3 data, including ques-
tionnaires and biospecimens, were systematically gath-
ered at baseline (day 0) and then, when possible, on days 
3, 7, 14, 21, and 28, followed by the 3rd, 6th, 12th, 18th, 
and 24th months post-enrollment. This analysis uses risk 
prediction modeling to identify cytokine biomarkers for 
illness severity among participants who tested positive 
for COVID-19.

Study population
The inclusion criteria for the study stipulate that partici-
pants must be aged 18 or older, classified as an inpatient 
or outpatient at one of the participating Veterans Affairs 
medical centers from June 2020 to September 2022, and 
have undergone a SARS-CoV-2 RT-PCR test within three 
weeks prior to recruitment. From the pool of invited Vet-
erans, 60% agreed to enroll, and 21% of these participants 
had research blood drawn to undergo a comprehensive 
panel of 45 cytokines assessed using the Luminex plat-
form. Participants or their authorized representatives 
provided informed consent. The study was reviewed and 
approved by the VA Central IRB. The criteria for our 
analysis were not based on a target number of samples, 
rather the sample size was limited by the number of sam-
ples available in the biorepository that fit the pre-defined 
criteria. Thus, our study sample included those with a 
positive SARS-CoV-2 RT-PCR test result at enrollment 
and baseline measurements of 45 cytokines.

https://clinicaltrials.gov/study/NCT05764083#more-information
https://clinicaltrials.gov/study/NCT05764083#more-information
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Exposures
Participants with positive test outcomes of SARS-CoV-2 
RT-PCR tests at recruitment were chosen for this anal-
ysis. Their classification as either inpatients or outpa-
tients was established at the baseline. Demographic data, 
including age, sex, and race/ethnicity, were gleaned from 
the initial questionnaires or EHR. We calculated par-
ticipants’ Charlson comorbidity index (CCI), a compos-
ite measure of medical comorbidities, using the method 
detailed by Quan and colleagues, with data from the EHR 
from the 2 years before enrollment [10].

A comprehensive panel of 45 cytokines was assessed 
using the Luminex platform (Vendor: Luminex Corpo-
ration) at PHRL. These cytokines included BDNF, EGF, 
Eotaxin, FGF-2, GM-CSF, GRO-α, HGF, IFN-α, IFN-γ, 
IL-1α, IL-1β, IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, 
IL-9, IL-10, IL-12(p70), IL-13, IL-15, IL-17A, IL-18, 
IL-21, IL-22, IL-23, IL-27, IL-31, IP-10, LIF, MCP-1, MIP-
1-α, MIP-1-β, NGF-β, PDGF-BB, PlGF-1, RANTES, SCF, 
SDF-1-α, TNF-α, TNF-β, VEGF-A, and VEGF-D.

Outcome
One outcome assessed for all study participants was the 
degree of illness severity. This metric was determined 
by the highest level of severity a participant experi-
enced within the first 60 days following their entry into 
the study. Severity was measured using the Veterans 
Affairs Severity Index for COVID-19 (VASIC), which 
is an exclusive 4-tier scale (mild, moderate, severe, or 
death) derived from the World Health Organization’s 
COVID-19 severity scale. This scale was applied to EHR 
data, and its accuracy was confirmed through medical 
record review [11]. Mild severity encompassed partici-
pants who were in the hospital for 24 h or less; moder-
ate severity was for those hospitalized for more than 24 
h and included cases requiring low-flow oxygen therapy; 
severe cases were those needing high-flow oxygen, intu-
bation, mechanical ventilation, extracorporeal membrane 
oxygenation, vasopressors, or initiation of renal dialysis 
within 60 days post-diagnosis; and any deaths occur-
ring within 60 days, irrespective of cause, were classified 
under the death category.

In this analysis, the participants were stratified based 
on their SARS-CoV-2 infection severity into two cat-
egories: mild/moderate and severe/death. This approach 
addresses the limited sample size and simplifies the task 
of differentiating levels of COVID-19 severity. Moreo-
ver, combining’severe’and’death’categories addresses the 
issue of class imbalance due to the rarity of death events, 
enhancing the models’ ability to identify patterns predict-
ing severe outcomes.

Statistical analyses
The count and percentage of the participants’ baseline 
characteristics in each age, CCI, race/ethnicity, cohort 
(inpatient vs. outpatient), and sex categories were calcu-
lated, with each category further stratified by the severity 
of SARS-CoV-2 infection. The age groups were defined 
as: < 30, 30–39, 40–49, 50–59, 60–69, 70–79, and > = 80 
years. In this study, participants were categorized into 
four CCI groups: 0, 1–2, 3–4, and 5+. The race and eth-
nicity of the participants were combined into a single 
race/ethnicity variable, that included the categories: His-
panic, Non-Hispanic Black, Non-Hispanic White, and 
Other. The cohort category identified a participant as 
either inpatient or outpatient, and the sex of participants 
was classified as female or male.

We also compared the baseline cytokine responses 
between the mild/moderate and severe/death groups. 
The results were presented as median and interquar-
tile range (IQR). We calculated the percentage of out-
of-detection-limit values for each cytokine. We divided 
participants into a 70% training set and a 30% test set 
using randomization stratified by the severity of their 
SARS-CoV-2 infection. We assessed whether the train-
ing and test sets were comparable in terms of the sever-
ity of SARS-CoV-2 infection and baseline characteristics. 
Then we conducted univariate analysis in the training set 
to examine the ability of each cytokine response to dif-
ferentiate between mild/moderate vs severe/death cases 
by using the Receiver Operating Characteristic Curve 
(ROC) and the area under the ROC curve (AUC). We 
also calculated the sensitivity, specificity, Youden index, 
and best cut-off value for each model. After the univari-
ate analysis, we chose the cytokines with AUC’s 95% 
confidence interval (CI) lower boundary exceeding 0.5 
(random guess) to be included in the risk prediction 
models. Additionally, we evaluated the ability of CCI 
alone to distinguish between mild/moderate and severe/
death cases using ROC and AUC analysis.

We leveraged the Pearson’s correlation coefficient 
(r) to investigate the pairwise correlations between the 
cytokine responses selected to be included in the risk 
prediction model. Correlations were visualized using a 
heatmap, with stronger correlations (r closer to 1) repre-
sented in shades closer to red and weaker correlations (r 
closer to 0) appearing closer to blue. We hoped to discern 
the intercorrelation patterns and potential clustering 
among the cytokine responses.

We aimed to construct prediction models using the 
selected cytokine responses to predict the risk of hav-
ing SARS-CoV-2 infection severity of severe/death as 
opposed to mild/moderate. We did not incorporate other 
variables such as age, sex, or comorbidities/CCI into the 
prediction models because our objective was to assess 
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cytokines as independent predictors of SARS-CoV-2 
severity. Additionally, we also hoped to identify which 
variables contribute the most to the prediction of the 
severity of SARS-CoV-2 infection. However, given the 
intercorrelated nature of the cytokine responses, build-
ing prediction models using all the selected cytokine 
responses may lead to overfitting problems. Therefore, 
we decided to employ a penalized regression method, the 
least absolute shrinkage and selection operator (LASSO) 
logistic regression, to perform variable selection and reg-
ularization to achieve better model performance [12].

To construct the LASSO model, we logarithmically 
transformed the cytokine concentrations. The optimal 
penalty parameter was determined via tenfold cross-
validation and then used to construct the LASSO model 
in the training set [13]. The discriminative ability of 
the LASSO model in the test set was evaluated using 
the ROC and AUC [14]. We assessed the calibration of 
the model using the Hosmer–Lemeshow tests. LASSO 
regression was conducted using the GLMNET package in 
R. Cytokine responses chosen through LASSO regression 
were presented with the absolute coefficient value for 
each variable indicated.

To offer an alternative and complementary analysis to 
the LASSO regression, we also leveraged a random for-
est model [15, 16] and the eXtreme Gradient Boosting 
(XGBoost) [17] using the selected cytokine responses to 
predict the severity of SARS-CoV-2 infection. The same 
training and test sets were used. We ranked the impor-
tance of the selected cytokine responses based on their 
ability to discriminate between patients having severe/
death outcome as opposed to mild/moderate outcome. In 
the random forest model, feature importance was deter-
mined by the mean decrease in Gini [15], while in the 
XGBoost model, it was determined by the mean absolute 
SHapley Additive exPlanations (SHAP) value [18]. Simi-
larly, we used ROC and AUC to evaluate the discrimi-
native ability of the random forest model and XGBoost 
model in the test set and presented the most significant 
cytokine predictors and their feature importance in a 
table. We also assessed the calibration of the models 
using the Hosmer–Lemeshow tests.

Finally, we visualized the feature importance of each 
cytokine in the Lasso, random forest, and XGBoost 
models to assess the consistency of variable importance 
between the three methods and examine whether there is 
evidence that these cytokines were genuine predictors or 
selected by chance.

Results
Descriptive analysis
The baseline characteristics of the study subjects 
stratified by the severity of SARS-CoV-2 Infection are 

presented in Table  1. Age distributions were overall 
comparable between the mild/moderate and severe/
death groups. However, the severe/death group had a 
higher proportion of participants aged 80 and above 
(16.7%) and fewer below 40 years (2.4%) than the mild/
moderate group (aged 80 and above: 5.6%, below 40 
years: 8.8%). A greater percentage of participants in the 
severe/death group had a CCI of 3 or higher (69.1%), 
indicating higher disease morbidity at the time of 
SARS-CoV-2 infection, compared to the mild/moderate 
group (48.7%). A higher proportion of the severe/death 
group was inpatients (97.6%) compared to the mild/
moderate group (82.5%). The distribution of sexes was 
consistent across both groups.

The baseline cytokine responses of the study sub-
jects stratified by the severity of SARS-CoV-2 Infec-
tion are presented in Table  2. Several cytokines have 
more than 40% of their values out of detection limits, 
including FGF-2, IL-1β, IL-4, IL-5, IL-6, IL-9, IL-12p70, 
IL-21, IL-22, IL-23, IL-27, IL-31, NGF-β, TNF-β, and 
VEGF-D. Overall, these data suggest that individuals 

Table 1 Baseline characteristics of study population stratified by 
the severity of SARS‑CoV‑2 infection

Data are presented as n (%)

Variables Mild/moderate 
(n = 160)

Severe/death (n = 42)

Age
 < 30 2 (1.3%) 0 (0.0%)

 30 and < 40 12 (7.5%) 1 (2.4%)

 40 and < 50 8 (5.0%) 3 (7.1%)

 50 and < 60 28 (17.5%) 6 (14.3%)

 60 and < 70 50 (31.3%) 11 (26.2%)

 70 and < 80 51 (31.9%) 14 (33.3%)

 > = 80 9 (5.6%) 7 (16.7%)

CCI
 0 35 (21.9%) 6 (14.3%)

 1–2 47 (29.4%) 7 (16.7%)

 3–4 37 (23.1%) 13 (31.0%)

 5 + 41 (25.6%) 16 (38.1%)

Race/Ethnicity
 Hispanic 7 (4.4%) 4 (9.5%)

 Non‑Hispanic black 66 (41.3%) 15 (35.7%)

 Non‑Hispanic white 74 (46.3%) 19 (45.2%)

 Other 13 (8.1%) 4 (9.5%)

Cohort
 In‑Patient 132 (82.5%) 41 (97.6%)

 Out‑Patient 28 (17.5%) 1 (2.4%)

Sex
 Female 15 (9.4%) 3 (7.1%)

 Male 145 (90.6%) 39 (92.9%)
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with different illness severity display distinct cytokine 
expression patterns at the time of presentation.

The training and test sets were comparable in terms 
of SARS-CoV-2 severity and baseline characteristics, as 
evidenced by similar distributions across groups (Sup-
plementary Table 1).

Using these data, we identified 10 cytokines that differ-
entiated illness severity in a univariate analysis (Table 3). 
We selected cytokines with AUC 95% CI lower bound 
> 0.5, which indicates significant predictive power over 
chance. IP-10 has the highest AUC (0.707, 95% CI: 0.622–
0.791), followed by HGF (0.649, 95% CI: 0.554–0.744) and 
MCP-1 (0.635, 95% CI: 0.534–0.736). The 10 cytokines in 
Table 3 were selected to be included in the risk prediction 
models. These data suggest that certain cytokines have 
significant predictive power in distinguishing between 
different severities of SARS-CoV-2 infection. In compari-
son to these cytokines, using CCI alone achieved an AUC 
of 0.603 (95% CI: 0.511–0.696), which is less than or at 
most comparable to the predictive performance of indi-
vidual cytokines such as IP-10, HGF, and MCP-1.

We also compared the correlation between selected 
cytokines of interest from the univariate analysis (Fig. 1). 
We identified two clusters of intercorrelated cytokines, as 
indicated by the two predominant red blocks in the heat-
map. In the larger red block, IL-27, IL-1RA, IL-15, MCP-
1, VEGF-A, HGF, and IP-10 exhibited strong correlations 
with each other. Meanwhile, in the smaller red block, 
IL-2 and GM-CSF were strongly correlated.

LASSO regression
Using LASSO regression, we identified a set of cytokines 
effective for outcome prediction. Six cytokines were 
selected by the LASSO model, based on their absolute 
regression coefficient values, with the strongest predic-
tive power provided by HGF (0.28), followed by MCP-1 
(0.19), IP-10 (0.16), IL-2 (0.12), VEGF-A (0.04), and IL-
17A (0.04) (Fig. 3a). These cytokines predict outcomes in 
this initial model with an AUC for the test set of 0.773 
(Fig.  2, 95%CI: 0.640–0.967). The Hosmer–Lemeshow 
test p-value was 0.263 (Table 4).

Random forest model and XGBoost model
To further bolster our statistical conclusions, we per-
formed random forest and XGBoost modeling to 
predict outcomes using the same data. The random 
forest model identified a set of cytokines with similar 
predicted test effectiveness as in LASSO regression 
(Fig.  2, AUC 0.804, 95%CI: 0.601–0.944). The feature 
importance of each cytokine is presented as the mean 
decrease in Gini (Fig. 3b). Likewise, XGBoost identified 
a cytokine set with similar performance (Fig.  2, AUC 

Table 2 Cytokine levels of study population stratified by the 
severity of SARS‑CoV‑2 infection

Data are presented as median (IQR)

OOR <, below the lower detection limit; OOR >, above the upper detection limit

Cytokines Mild/moderate (n = 160) Severe/death (n = 42)

BDNF 73.02 (34.59, 187.07) 110.56 (46.60, 301.73)

EGF 21.67 (6.54, 66.32) 18.69 (5.53, 37.66)

Eotaxin 78.24 (36.08, 141.35) 94.86 (55.38, 163.57)

FGF‑2 OOR < (OOR <, 11.38) OOR < (OOR <, 6.80)

GM‑CSF 43.85 (7.08, 220.38) 21.66 (OOR <, 67.10)

GRO‑α 7.50 (OOR <, 27.42) 7.63 (OOR <, 21.15)

HGF 272.18 (120.89, 698.81) 609.71 (243.60, 1092.81)

IFN‑α 1.17 (OOR <, 6.05) 0.85 (OOR <, 3.32)

IFN‑γ 16.66 (4.67, 57.78) 18.90 (8.86, 41.84)

IL‑1‑α 0.41 (OOR <, 2.13) 0.36 (OOR <, 1.86)

IL‑1‑β 5.80 (OOR <, 25.64) 3.65 (OOR <, 13.68)

IL‑1RA 1078.73 (498.40, 2100.30) 1704.74 (796.54, 3459.01)

IL‑2 14.39 (OOR <, 62.00) 6.24 (OOR <, 16.11)

IL‑4 OOR < (OOR <, 42.16) OOR < (OOR <, OOR <)

IL‑5 1.35 (OOR <, 35.47) OOR < (OOR <, 13.73)

IL‑6 25.28 (OOR <, 219.44) 26.22 (OOR <, 80.60)

IL‑7 3.62 (1.36, 9.35) 3.09 (1.54, 6.60)

IL‑8 4.79 (OOR <, 13.35) 6.75 (2.47, 14.50)

IL‑9 OOR < (OOR <, 17.40) OOR < (OOR <, OOR <)

IL‑10 1.79 (OOR <, 7.34) 2.39 (0.93, 4.96)

IL‑12p70 0.68 (OOR <, 2.91) 0.41 (OOR <, 1.12)

IL‑13 8.73 (OOR <, 29.76) 6.32 (2.42, 16.44)

IL‑15 20.53 (1.88, 116.78) 9.33 (1.10, 31.35)

IL‑17A 17.11 (1.27, 78.41) 6.20 (OOR <, 27.34)

IL‑18 33.40 (16.47, 60.64) 36.83 (24.05, 67.07)

IL‑21 OOR < (OOR <, 94.50) OOR < (OOR <, 17.04)

IL‑22 OOR < (OOR <, 44.69) OOR < (OOR <, 12.42)

IL‑23 OOR < (OOR <, 88.47) OOR < (OOR <, OOR <)

IL‑27 33.31 (OOR <, 285.85) OOR < (OOR <, 65.76)

IL‑31 OOR < (OOR <, 126.79) OOR < (OOR <, OOR <)

IP‑10 124.08 (55.83, 596.16) 660.36 (212.48, 1617.52)

LIF 10.06 (3.83, 46.29) 7.56 (4.28, 19.98)

MCP‑1 97.56 (51.85, 188.78) 183.26 (84.34, 293.89)

MIP‑1‑α 14.38 (3.89, 42.40) 12.57 (8.81, 38.50)

MIP‑1‑β 78.72 (31.46, 132.79) 92.78 (66.13, 144.45)

NGF‑β 6.19 (OOR <, 25.01) OOR < (OOR <, 6.19)

PDGF‑BB 234.62 (95.45, 602.95) 267.38 (110.06, 1239.12)

PIGF‑1 13.62 (OOR <, 41.78) 19.27 (OOR <, 57.38)

RANTES 612.82 (339.06, OOR >) 696.85 (398.89, OOR >)

SCF 15.10 (7.20, 31.94) 15.15 (9.25, 31.35)

SDF‑1‑α 675.14 (331.74, 978.67) 794.22 (526.88, 1263.75)

TNF‑α 5.84 (0.86, 31.01) 4.72 (0.81, 9.44)

TNF‑β OOR < (OOR <, OOR <) OOR < (OOR <, OOR <)

VEGF‑A 184.47 (86.27, 490.23) 325.19 (194.84, 790.06)

VEGF‑D OOR < (OOR <, 40.67) 7.62 (OOR <, 35.50)
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0.807, 95%CI: 0.656–0.959). Here, the feature impor-
tance of each cytokine is presented as mean absolute 
SHAP value (Fig.  3c). In the random forest model, 
IP-10 has the highest feature importance, followed by 
VEGF-A, MCP-1, HGF, IL-1-RA, IL-15, IL-17A, GM-
CSF, IL-27, and IL-2. In the XGBoost model, VEGF-A 
has the highest feature importance, followed by IP-10, 
MCP-1, HGF, IL-1-RA, IL-17A, IL-15, IL-27, IL-2, and 

GM-CSF. The Hosmer–Lemeshow test p-values for 
the random forest and XGBoost models were 0.155 
and 0.218, respectively (Table 4). The AUC, sensitivity, 
specificity, Youden index, and Hosmer–Lemeshow test 
p-values for the LASSO, RF, and XGBoost models are 
detailed in Table 4.

Table 3 ROC curve analysis by cytokines to predict the severity of SARS‑CoV‑2 infection

Cytokines Cutoff Value AUC (95% CI) Sensitivity Specificity Youden Index

GM‑CSF 26.805 0.599 (0.507, 0.691) 0.595 0.619 0.214

HGF 235.305 0.649 (0.554, 0.744) 0.810 0.463 0.272

IL‑1RA 1767.135 0.599 (0.504, 0.695) 0.500 0.706 0.206

IL‑2 10.950 0.609 (0.516, 0.702) 0.667 0.575 0.242

IL‑15 14.000 0.597 (0.505, 0.689) 0.643 0.588 0.230

IL‑17A 12.305 0.601 (0.507, 0.695) 0.619 0.575 0.194

IL‑27 71.405 0.593 (0.511, 0.675) 0.810 0.456 0.266

IP‑10 200.975 0.707 (0.622, 0.791) 0.762 0.619 0.381

MCP‑1 156.295 0.635 (0.534, 0.736) 0.595 0.694 0.289

VEGF‑A 180.780 0.621 (0.529, 0.713) 0.786 0.500 0.286

Fig. 1 Heatmap of correlations between 10 cytokines with individual AUC 95% CI lower bounds exceeding 0.5
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Fig. 2 ROC curves for the LASSO, RF, and XGBoost models

Table 4 ROC curve analysis and Hosmer–Lemeshow p‑value by models to predict the severity of SARS‑CoV‑2 infection

Models AUC (95% CI) Sensitivity Specificity Youden Index Hosmer–
Lemeshow 
p-value

LASSO 0.773 (0.601, 0.944) 0.750 0.792 0.542 0.263

RF 0.804 (0.640, 0.967) 0.917 0.771 0.688 0.155

XGBoost 0.807 (0.656, 0.959) 0.917 0.708 0.625 0.218

Fig. 3 Feature importance of each cytokine in the risk prediction models. A LASSO model. B RF model. C XGBoost model



Page 8 of 11Li et al. BMC Infectious Diseases          (2025) 25:677 

Discussion
In this study, we identified a set of peripheral blood 
cytokines that effectively predict the severity of SARS-
CoV-2 infection in a Veteran population. The AUC for 
the LASSO model is greater than 0.7, which is consid-
ered acceptable, while the AUC values for the random 
forest and XGBoost models exceed 0.8, indicating excel-
lent discriminative ability. In addition, the models also 
demonstrate good calibration, as reflected by their Hos-
mer–Lemeshow p-values being greater than 0.05. The 
consistency of the feature importance of each cytokine in 
the three models is particularly noteworthy. Specifically, 
cytokines such as Interferon gamma-induced protein 10 
(IP-10), Vascular Endothelial Growth Factor A (VEGF-
A), Monocyte Chemoattractant Protein 1 (MCP-1), and 
Hepatocyte Growth Factor (HGF) were repeatedly high-
lighted as important predictors, suggesting their robust 
role in the predictive models. This consistency across 
multiple models suggests that cytokine profiles may pre-
dict the severity of SARS-CoV-2 infection after validation 
in larger and more diverse cohorts.

The peripheral blood cytokines identified to be key 
risk predictors for the severity of SARS-CoV-2 infection 
in our study align with observations from several stud-
ies that also identified many of the same cytokines. Yang 
et  al. reported that plasma IP-10 and MCP-3 levels are 
highly associated with illness severity and predict the 
progression of COVID-19 [6]. Similarly, Chen et al. iden-
tified IP-10 and MCP-1 as key biomarkers for COVID-19 
severity [19]. Furthermore, Perreau et  al. demonstrated 
that the cytokines HGF and CXCL13 are predictive of 
both the severity and mortality in COVID-19 patients 
[20]. Understanding these immune patterns may pro-
vide improved clinical decision-making at the individual 
level and improved resource allocation at a population 
level. Of the 10 cytokines identified as individual predic-
tors, several (IP-10, IL-2, IL-15, IL-17A) are dependent 
on effective adaptive T cell responses to reduce inflam-
mation and severity of disease. These echo multiple stud-
ies, including predictive models [21], observations that T 
cell memory responses to SARS-CoV-2 reduce the sever-
ity of disease in convalescent individuals [22] and after 
vaccination across serotypes [23, 24]. These data provide 
further evidence of the key importance of SARS-CoV-2 
vaccination in preventing mortality from SARS-CoV-2 in 
our US Veteran population.

This study has several strengths. First, we utilized a 
comprehensive panel of 45 cytokines, allowing for a thor-
ough investigation of potential biomarkers. This broad 
approach increases the likelihood of identifying key 
cytokines for predicting the risk of severe SARS-CoV-2 
infection. Second, our study employed a robust method-
ological framework, utilizing LASSO logistic regression, 

random forest, and XGBoost models to analyze a com-
plex dataset with multiple predictors. This multi-method 
approach not only provided a comprehensive analysis 
but also served to cross-validate our findings, enhanc-
ing their reliability. The discriminative ability observed 
in the test set (77.3%, 80.4%, and 80.7%, respectively) is 
indicative of the effectiveness of our models. In addition, 
the study draws data from 15 different VA medical cent-
ers across the United States, providing a geographically 
and racially diverse sample. Enrollment took place from 
June 2020 to September 2022, and so participants were 
exposed to a wide range of SARS-CoV-2 variants. Moreo-
ver, the VASIC is a validated tool specifically tailored to 
assess COVID-19 severity, which reduces misclassifica-
tion and enhances the accuracy of severity assessments. 
Finally, we had comprehensive data from the medical 
records on participant characteristics and outcomes, and 
the multi-point follow-up in the  EPIC3 study enables a 
detailed capture of disease progression over time.

While the study offers valuable insights, certain limita-
tions must be acknowledged. Firstly, the focus on the US 
Veteran population, while providing detailed insights for 
this demographic, might limit the generalizability of our 
findings to the wider population. The diverse health pro-
files and experiences of Veterans may not fully represent 
the broader spectrum of patients affected by COVID-19, 
especially female populations. Additionally, our study 
population also differs in terms of baseline character-
istics from the participants of the broader  EPIC3 study. 
Among those who participated in  EPIC3 as inpatient or 
outpatient participants and had a positive RT-PCR test 
at baseline, only 25.2% were inpatients, whereas in our 
study population, where baseline multiplex cytokine 
measurements were available, 85.6% were inpatients. This 
discrepancy arises because inpatients are more likely to 
undergo comprehensive biomarker assessments. In the 
future, expanding cytokine measurements to a larger 
and more diverse participant pool will be essential for 
enhancing the generalizability of our findings. Moreo-
ver, the simplification of the Veterans Affairs Severity 
Index for COVID-19 into a binary outcome may have 
obscured more subtle gradations in illness severity. This 
could impact the applicability of our findings to clinical 
scenarios where such nuances are critical. Another limi-
tation is the dependency on the Luminex assay platform 
for cytokine measurement, which could pose challenges 
in replicating our results in settings where different tech-
nologies or assays are used. Furthermore, this study only 
leverages baseline cytokine measurements, and we are 
not capturing the dynamic changes in cytokine levels that 
occur over time or at the time of symptom onset, which 
may affect the performance of risk prediction models.
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To address these limitations and build on our find-
ings, future research should focus on a more diverse 
and representative sample of the population, which 
would enhance the external validity and applicability of 
the results. Longitudinal studies would provide valuable 
insights into the temporal dynamics of cytokine profiles 
and their correlation with disease progression and recov-
ery. Additionally, incorporating other biomarkers and 
clinical parameters into the analysis could offer a more 
comprehensive understanding of COVID-19 and its myr-
iad presentations. Such integrative studies could further 
refine the predictive models and potentially uncover new 
therapeutic targets or diagnostic markers.

In conclusion, our study demonstrates that periph-
eral blood cytokine profiles are effective predictors of 
SARS-CoV-2 infection severity among US Veterans. 
Using multiple methods, we identified key cytokines cor-
related with severe outcomes. Future research should 
focus on validating these results in larger cohorts and 
exploring the underlying mechanisms of these cytokines 
in COVID-19 progression, paving the way for targeted 
treatment approaches.
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