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Abstract 

Background  Invasive fungal disease (IFD) is characterized by its capacity to rapidly escalate to life-threatening condi-
tions, even when patients are hospitalized. However, the precise prognostic significance of baseline clinical character-
istics related to the progression outcome of IFD remains elusive.

Methods  A retrospective cohort study spanning a duration of 10 years was conducted at two prominent tertiary 
teaching hospitals in Southern China. Patients with proven IFD were queried and divided into serious and non-serious 
groups based on the disease deterioration. To establish robust predictive models, patients from the first hospital were 
randomly assigned to either a training set or an internal validation set, while patients from the second hospital consti-
tuted an external test set. To analyze the potential predictors of IFD deterioration and identify independent predictors, 
the study employed the least absolute shrinkage and selection operator (LASSO) method in conjunction with binary 
logistic regressions. Based on the outcomes of this analysis, a predictive nomogram was constructed. The perfor-
mance of the developed model was thoroughly evaluated using the training set, internal validation set, and external 
test set.

Results  A total of 480 cases from the first hospital and 256 cases from the second hospital were included 
in the study. Among the 480 patients, 81 cases (16.9%) experienced deterioration, and out of those, 45 (55.6%) cases 
resulted in mortality. Seven independent predictors were identified and utilized to construct a predictive nomogram. 
The nomogram exhibited excellent predictive performance in all three sets: the training set, internal validation set, 
and external test set. The area under the receiver operating characteristic curve (AUC) for the training set was 0.88, 
for the internal validation set was 0.91, and for the external test set was 0.90. The Hosmer–Lemeshow test and Brier 
score indicated a high goodness of fit for the model. Furthermore, the calibration curve demonstrated a strong agree-
ment between the predicted outcomes from the nomogram and the actual observations. Additionally, the decision 
curve analysis exhibited that the nomogram provided significant clinical net benefits in predicting IFD deterioration.
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Conclusions  The study successfully identified seven independent predictors and developed a predictive nomogram 
for early assessment of the likelihood of IFD deterioration.

Keywords  Invasive fungal disease, Independent predictor, Nomogram, Prediction probability

Background
The colonization of fungal spores on luminal surfaces 
in vivo has the potential to penetrate tissues and progress 
to invasive fungal disease (IFD), especially in individuals 
with compromised immune status [1, 2]. A significant 
proportion of these patients experienced fungal dissemi-
nation and disease progression to life-threatening con-
ditions even after hospitalization [3]. The IFD-related 
mortality ranges from 30 to 60% for invasive pulmonary 
aspergillosis, 40% to 60% for invasive candidiasis, and 
31.3% to 50% in patients post hematopoietic stem cell 
transplantation, imposing heavy psycho-physiological 
and economic burden on patients, their family members, 
and health institutions [1, 4–6].

Early detection and preemptive intervention of IFD 
deterioration are crucial for enhancing patients’ prog-
nosis [6, 7]. However, early prediction of risk for dis-
ease progression in IFD patient is challenging due to the 
diversity of clinical presentation and disease course [8]. 
Approximately 30% to 80% of patients with pulmonary 
cryptococcosis are asymptomatic [5]. In non-neutro-
penic patients, the clinical manifestation of IFD is less 
pronounced than in neutropenic individuals, often lead-
ing to delayed diagnosis and treatment [9]. This delay, 
along with factors such as inadequate or inappropri-
ate treatment and the presence of multidrug-resistant 
fungal strains, contributes to disease deterioration and 
life-threatening complications [10, 11]. Moreover, these 
indicators are typically observed in later stages, making 
early prediction particularly challenging. Nonetheless, it 
was reported that the disease progress from fungal colo-
nization to tissue breakthrough is not only related to the 
number of fungal spores exposed, but also related to the 
baseline variables of underlying conditions and immune 
status of patients [12, 13]. The findings make it possible 
to predict disease deterioration early based on baseline 
indicators.

Currently, nomogram has emerged as a highly promis-
ing instrument for predicting clinical outcomes in vari-
ous disease contexts, including fungal infections [14–16]. 
This tool enables the incorporation of multiple risk fac-
tors into a single predictive model, offering a graphical 
depiction of the probability of an event. Consequently, 
clinicians can utilize nomograms to guide targeted 
therapies and tailor interventions to the patients most 
in need [17]. Presently, there is a noticeable absence of 
clinical prediction models specifically designed for early 

identification of IFD deterioration. Recognizing this gap, 
our study aims to contribute to the field by introduc-
ing a novel and practical predictive tool. We developed 
a prototype nomogram that utilizes a comprehensive set 
of baseline clinical characteristics collected from IFD 
patients upon admission to predict disease deterioration 
early and effectively, enabling clinicians to implement 
timely interventions and improve patient prognoses.

Methods
Study design and ethics
A 10-year retrospective cohort study was conducted 
in two tertiary teaching hospitals in Southern China. 
Ethical approval was obtained from the Medical Ethics 
Committee of Zhujiang Hospital, Southern Medical Uni-
versity, and the Medical Ethics Committee of the Affili-
ated Guangdong Second Provincial General Hospital, 
Jinan University. In view of the retrospective design and 
the use of de-identified data, the requirement for written 
informed consent to participate was waived by both com-
mittees. The study protocol complied with the principles 
outlined in the Declaration of Helsinki [18].

Definitions
The criteria for clinical proven IFD consist with the 
EORTC/MSGERC guideline [19]. Host factors are 
defined as any of the followings: recent history of neu-
tropenia (neutrophils < 0.5 × 109/L for > 10 days); hema-
tologic malignancy; the receipt of an allogeneic stem 
cell or solid organ transplant (SOT); prolonged use of 
corticosteroids (≥ 0.3 mg/kg for ≥ 3 weeks in the past 60 
days); treatment with T-cell immunosuppressant during 
the past 90 days; treatment with recognized B-cell immu-
nosuppressant; inherited severe immunodeficiency [19]. 
Time from onset to diagnosis is defined as the period of 
first appearance of symptoms to IFD confirmation [20]. 
If a precise date of the onset of symptom could not be 
determined, the date of the patient’s first clinic visit, or 
admission to hospital with suspected IFD are deemed as 
the date of illness onset. We defined IFD deterioration as 
the development of fungal dissemination and life-threat-
ening conditions, with at least one or more organ dys-
function requiring supportive therapies, including sepsis, 
septic shock, respiratory failure requiring mechanical 
ventilation, candidemia, endocarditis, osteomyelitis, 
central nervous system infection, extension of fungal 



Page 3 of 14Wang et al. BMC Infectious Diseases          (2025) 25:673 	

sinusitis with endophthalmitis or encephalitis, or intra-
abdominal infection, etc., as documented during the dis-
ease course [1, 4, 21–28].

Patient retrieval
Patients who hospitalized with suspected IFD from Jan-
uary 1, 2011 to June 30, 2021 were queried through the 
Electronic Medical Record System (eMRS) using the 
search string of ’fungal’, ’mycosis’, ’aspergillosis’, ’mucor-
mycosis’, ’cryptococcosis’, ’pneumocystis’ or ’candidi-
asis’. Then, medical records were manually reviewed, 
if the following criteria were met, patients were eligible 
for enrollment: 1) aged ≥ 18 years; 2) with pathologically 
confirmed IFD at discharge; 3) complete clinical data; 
and 4) able to follow-up from admission to discharge or 
event of death through the eMRS. If any of the followings 
was met, patient was excluded: 1) history of IFD prior to 
admission, e.g., chronic cavitary pulmonary aspergillosis; 
2) concomitant with fatal infection and organ dysfunc-
tion at admission; 3) dermatomycosis; 4) missing more 
than 20% data, including clinical or laboratory variables; 
5) known pregnancy.

Data acquisition
Baseline clinical characteristics upon admission were 
systematically collected from patients admitted to the 
first hospital, covering a wide range of factors, including 
demographic information, time from onset to diagnosis, 
seasonal onset patterns, host-related factors, comorbidi-
ties, symptoms presented upon admission, laboratory 
test results, pathological evidence, site of infection, fun-
gal species, co-infection with other definitive pathogens, 
and ultimate outcomes. For patients from the second 
hospital (external validation set), only the independent 
predictors identified through binary logistic regression 
analysis were collected, streamlining the data collection 
process. To ensure accuracy and reliability, data cross-
checking and entry into an electronic case report form 
were performed by two pairs of researchers, minimizing 
the potential for errors or inconsistencies.

Nomogram configuration and evaluation
A systematic approach was followed to develop and eval-
uate the predictive nomogram for IFD deterioration. 1) 
Patient categorization: after enrollment, patients with 
IFD deterioration were assigned to the serious group, 
while the remaining cases to the non-serious group. 2) 
Dataset splitting: data of patients from the first hospital 
were randomly allocated to a training set and an inter-
nal validation set, with a ratio of 7:3. Patients from the 
second hospital constituted the external test set. To 
validate the model’s generalization ability, we did not 
strictly maintain the same case-to-control ratio between 

the training and validation sets during the data splitting. 
Instead, random assignment was adopted to ensure data 
representativeness. Similarly, for the external test set, we 
did not match the class proportions to those in the train-
ing set, but instead utilized all available data. Prior to 
the splitting, a thorough comparison of baseline clinical 
characteristics between the training and validation sets 
was conducted to ensure there were no statistically sig-
nificant differences. 3) Selection of predictors and nomo-
gram construction: LASSO regression was performed on 
the baseline clinical characteristics in the training set to 
determine the optimal predictors for IFD deterioration, 
with aim to reduce unnecessary predictor variables and 
address collinearity issues. The regularization parameter 
(λ) for the regression model was determined through 
tenfold cross-validation. The optimal λ value that mini-
mized the number of predictor variables, reduced regres-
sion error, and maximized predictive performance was 
selected [29]. Given that each variable in the regression 
model should correspond to at least 10 positive events 
[30], and to ensure the model’s stability and avoid overfit-
ting, we applied a stepwise regression (backward elimina-
tion) method for feature selection following the LASSO 
regression. Specifically, in each step, the clinical features 
with P-values ≥ 0.05 were removed until we identified 
the independent and statistically significant features. The 
selected features were then used to construct the predic-
tive nomogram. 4) Model evaluation: the performance of 
the nomogram including prediction, calibration and clin-
ical utility was evaluated using the training set, internal 
validation set, and external test set, respectively.

Statistical analysis
Statistical analysis was performed using R software (ver-
sion 4.2.2, http://​www.r-​proje​ct.​org), and SPSS 21.0 
(SPSS, Inc., Chicago, IL, USA). Discrete variables were 
presented as median (25% percentile, 75% percentile) and 
compared using the Mann–Whitney U test. Categorical 
data were expressed as numbers (percentages) and ana-
lyzed with the Chi-square test. LASSO regression and 
binary logistic regression were performed to determine 
the optimal predictors and independent predictors for 
IFD deterioration. The variance inflation factor (VIF) was 
calculated to assess multicollinearity among the inde-
pendent predictors selected through logistic regression in 
the training set, ensuring that the variables do not inter-
fere with each other. Variables with more than 20% miss-
ing data (e.g., body mass index) were excluded from the 
analysis. After excluding these variables, the remaining 
dataset had only a small proportion of missing values, we 
used the random forest regression method for imputation 
[31]. Additionally, we randomly deleted 10% of the non-
missing data from the training set, internal validation set, 

http://www.r-project.org


Page 4 of 14Wang et al. BMC Infectious Diseases          (2025) 25:673 

and external test set, and calculated the mean squared 
error (MSE) between the imputed data and the original 
data for each dataset. The MSE values for the three data-
sets were 0.092, 0.11, and 0.096, respectively, indicating 
that the imputation method demonstrates good robust-
ness. The discrimination metrics of the model included 
the area under the receiver operating characteristic curve 
(AUC), accuracy, sensitivity, and specificity. To assess 
the model’s calibration, the Hosmer–Lemeshow test and 
Brier score were performed on the training set, internal 
validation set, and external test set. The calibration curve 
was employed to evaluate the consistency between pre-
dicted probabilities and actual observations. Decision 
curve analysis (DCA) was adopted to assess the clinical 
utility by estimating the net benefit at different probabil-
ity thresholds [32]. All statistical tests were two-sided, 
and P ≤ 0.05 was considered statistically significant.

Results
Patient enrollment and clinical characteristics
Figure  1 illustrates the patient retrieval and study flow-
chart. A total of 736 patients with proven IFD were 
included in this study, with 480 cases originating from 
the first hospital and 256 cases from the second hospital. 

Among the patients from the first hospital, 81 cases 
(16.9%) experienced disease deterioration and 45 patients 
(55.6%) died during their hospital stay. The demographics 
and baseline clinical characteristics of the patients from 
the first hospital are shown in Table 1.

Optimal predictors
Among the patients in the first hospital, 336 cases were 
randomly assigned to the training set, while 144 patients 
were allocated to the internal validation set. There were 
no significant differences in baseline variables between 
the two sets, as shown in Table  2. The LASSO regres-
sion analysis identified 16 baseline variables as optimal 
predictors for IFD deterioration, including sex, SOT, 
chronic heart disease (CHD), one or more comorbidi-
ties, fever, respiratory symptoms, leukopenia, leukocyto-
sis, lymphocytopenia, normal lymphocyte, non-anemia, 
moderate anemia, normal thrombocyte, thrombocytope-
nia, abdominal pain and bloody runny nose, as shown in 
Fig. 2.

Nomogram configuration
Binary logistic regression analysis identified seven inde-
pendent predictors for IFD deterioration, namely SOT, 

Fig. 1  Patient enrolment and study flowchart. Notes: IFD, invasive fungal disease; LASSO, least absolute shrinkage and selection operator
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Table 1  Demographics and characteristics of patients with serious and non-serious IFD in the first hospital

Variables Serious (n = 81) Non-serious (n = 399)

Age, years, n (%)

  18—44 18 (22.2) 109 (27.3)

  45—59 28 (34.6) 177 (44.4)

  ≥ 60 35 (43.2) 113 (28.3)

Sex, n (%)

  Male 54 (66.7) 197 (49.4)

  Female 27 (33.3) 202 (50.6)

Current smoker, n (%) 13 (16) 35 (8.8)

Onset to diagnosis, day, Md (IQR) 20 (10—31) 38 (18—181)

Season of onset, month, n (%)

  1–3 16 (19.8) 104 (26.1)

  4–6 27 (33.3) 119 (29.8)

  7–9 14 (17.3) 85 (21.3)

  10–12 24 (29.6) 91 (22.8)

Host factors, n (%)

  Severe immunodeficiency 26 (32.1) 37 (9.3)

  T/B-cell immunosuppressants 17 (21) 20 (5)

  Prolonged use of corticosteroids 13 (16) 27 (6.8)

  Hematological malignancy 10 (12.3) 17 (4.3)

  Solid organ transplant 6 (7.4) 5 (1.3)

  Neutropenia 6 (7.4) 6 (1.5)

  Allogeneic stem cell transplantation 2 (2.5) 5 (1.3)

Comorbidities, n (%)

  Malignancy 23 (28.4) 38 (9.5)

  Chronic kidney disease 23 (28.4) 39 (9.8)

  Diabetes mellitus 16 (19.8) 36 (9.0)

  Liver disease 12 (14.8) 34 (8.5)

  Chronic heart disease 8 (9.9) 6 (1.5)

  Chronic lung disease 6 (7.4) 20 (5)

  Tuberculosis 6 (7.4) 19 (4.8)

  Severe respiratory viral infection 3 (3.7) 6 (1.5)

  Others 47 (58) 95 (23.8)

Symptoms at admission, n (%)

  Asymptomatic 0 (0) 24 (6)

  Fever 52 (64.2) 59 (14.8)

  Respiratory symptoms 50 (61.7) 147 (36.8)

  Bloody runny nose 2 (2.5) 68 (17)

  Abdominal pain 12 (14.8) 15 (3.8)

  Others 61 (75.3) 222 (55.6)

Laboratory examinations, n (%)

  White blood cell count, × 109/L

 < 0.5 1 (1.2) 1 (0.3)

 0.5—3.9 7 (8.6) 31 (7.8)

 4—10 34 (42) 309 (77.4)

 > 10 39 (48.1) 58 (14.5)

  Lymphocyte, × 109/L

 < 0.6 21 (25.9) 21 (5.3)

 0.6—0.9 19 (23.5) 35 (8.8)

 1—4 38 (46.9) 337 (84.5)
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CHD, presence of one or more comorbidities, fever, leu-
kocytosis, non-anemia, and thrombocytopenia, with no 
multicollinearity detected based on VIF assessment, as 
shown in Table  3. These independent predictors consti-
tute the core components of the predictive nomogram. 
The presence or absence of each independent predictor 
is assigned a score, and the total score corresponds to a 
prediction probability of IFD deterioration, as shown in 
Fig. 3. Table 4 presents the percentage of the independent 
predictors observed in the external test set.

Nomogram evaluation
The nomogram showed high predictive performance 
for IFD deterioration in both the training and internal 
validation sets, with AUCs of 0.88 (95%CI: 0.83–0.93) 

and 0.91 (95%CI: 0.86–0.97), respectively. The Youden-
derived optimal cut-off values were 0.17 and 0.15, with 
accuracies of 85.1% and 76.4%, sensitivities of 0.80 and 
0.95, and specificities of 0.86 and 0.73, respectively. 
When verified externally, the AUC was 0.90 (95%CI: 
0.87–0.94). The Youden-derived optimal cut-off val-
ues was 0.40, with an accuracy of 85.9%, a sensitivity of 
0.86 and a specificity of 0.86, as shown in Fig. 4 (a) and 
(b) and (c). The calibration curve showed a high con-
sistency between predictive and actual observation, as 
shown in Fig. 4 (d) and (e) and (f ). The Hosmer–Leme-
show test yielded P-values of 0.881, 0.731, and 0.716 
for the training set, internal validation set and external 
test sets, indicating no significant differences between 
the predicted and observed values of the model. 

Neutropenia denotes neutrophils < 0.5 × 109/L for more than 10 days; prolonged use of corticosteroids indicates ≥ 0.3 mg/kg for ≥ 3 weeks in the past 60 days; use of 
immunosuppressants denotes administration during the past 90 days

IFD Invasive fungal disease, Md median, IQR interquartile range, LOS Length of stay

Table 1  (continued)

Variables Serious (n = 81) Non-serious (n = 399)

 > 4 3 (3.7) 6 (1.5)

  Hemoglobin, g/L

 30—59 6 (7.4) 6 (1.5)

 60—89 30 (37) 25 (6.3)

 90—120 23 (28.4) 61 (15.3)

 > 120 22 (27.2) 307 (76.9)

  Platelet, g/L

 < 100 26 (32.1) 14 (3.5)

 100—300 38 (46.9) 302 (75.7)

 > 300 17 (21) 83 (20.8)

Infection sites, n (%)

  Oronasopharyngeal cavity 3 (3.7) 185 (46.4)

  Lung/lower respiratory tract 29 (35.8) 157 (39.3)

  Central nervous system 9 (11.1) 26 (6.5)

  Blood 27 (33.3) 4 (1)

  Abdomen 12 (14.8) 13 (3.3)

  Others 1 (1.2) 14 (3.5)

Fungal spectrum, n (%)

  Aspergillus spp. 23 (28.4) 198 (49.6)

  Cryptococcus spp. 8 (9.9) 87 (21.8)

  Candida spp. 29 (35.8) 12 (3)

  Mucor spp. 3 (3.7) 27 (6.8)

  Pneumocystis spp. 7 (8.6) 7 (1.8)

  Unidentified 8 (9.9) 63 (15.8)

  Others 3 (3.7) 5 (1.3)

Co-infection, n (%) 64 (79) 81 (20.3)

Outcomes

  LOS, day, Md (IQR) 16 (11—27) 9 (6—15)

  Hospital-mortality, n (%) 45 (55.6) 0 (0)
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Table 2  Comparison of baseline variables of patients at admission in the training and validation sets

Baseline variables Training set (n = 336) Validation set (n = 144) P 
value

Seriously ill, n (%) 60 (17.9) 21 (14.6) 0.380

Age, years, n (%)

  18—44 (youth) 91 (27.1) 36 (25) 0.635

  45—59 (middle-aged) 146 (43.5) 59 (41) 0.615

  ≥ 60 (senior) 99 (29.5) 49 (34) 0.321

Sex, n (%)

  Male 173 (51.5) 78 (54.2) 0.590

  Female 163 (48.5) 66 (45.8)

Current smoker, n (%) 33 (9.8) 15 (10.4) 0.842

Onset to diagnosis, day, Md (IQR) 34.5 (15—150.75) 31.5 (15—124.5) 0.992

Season of onset, month, n (%)

  1–3 88 (26.2%) 32 (22.2%) 0.358

  4–6 99 (29.5%) 47 (32.6%) 0.488

  7–9 70 (20.8%) 29 (20.1%) 0.863

  10–12 79 (23.5%) 36 (25%) 0.726

Host factors, n (%)

  Severe immunodeficiency 43 (12.8%) 20 (13.9%) 0.746

  T/B-cell immunosuppressants 25 (7.4%) 12 (8.3%) 0.737

  Prolonged use of corticosteroids 23 (6.8%) 17 (11.8%) 0.064

  Hematological malignancy 18 (5.4%) 9 (6.3%) 0.697

  Solid organ transplant 6 (1.8%) 5 (3.5%) 0.258

  Neutropenia 8 (2.4%) 4 (2.8%) 0.799

  Allogeneic stem cell transplantation 3 (0.9%) 4 (2.8%) 0.114

Comorbidities, n (%)

  Malignancy 38 (11.3%) 23 (16%) 0.160

  Chronic kidney disease 41 (12.2%) 21 (14.6%) 0.476

  Diabetes mellitus 39 (11.6%) 13 (9%) 0.405

  Liver disease 33 (9.8%) 13 (9%) 0.787

  Chronic heart disease 8 (2.4%) 6 (4.2%) 0.287

  Chronic lung disease 22 (6.5%) 4 (2.8%) 0.094

  Tuberculosis 21 (6.3%) 4 (2.8%) 0.117

  Severe respiratory viral infection 5 (1.5%) 4 (2.8%) 0.340

  One or more comorbidities 219 (65.2%) 102 (70.8%) 0.228

Symptoms at admission, n (%)

  Asymptomatic 19 (5.7%) 5 (3.5%) 0.315

  Fever 70 (20.8%) 41 (28.5%) 0.069

  Respiratory symptoms 142 (42.3%) 55 (38.2%) 0.406

  Bloody runny nose 47 (14%) 23 (16%) 0.572

  Abdominal pain 18 (5.4%) 9 (6.3%) 0.697

Laboratory examinations, n (%)

  White blood cell count, × 109/L

 < 0.5 (severe) 2 (0.6%) 0 (0) 0.354

 0.5—3.9 (leukopenia) 24 (7.1%) 14 (9.7%) 0.337

 4—10 (normal) 242 (72%) 101 (70.1%) 0.675

 > 10 (leukocytosis) 68 (20.2%) 29 (20.1%) 0.980

  Lymphocyte, × 109/L, n (%)

 < 0.6 (severe) 26 (7.7%) 16 (11.1%) 0.231

 0.6—0.9 (lymphocytopenia) 44 (13.1%) 10 (6.9%) 0.051

 1—4 (normal) 260 (77.4%) 115 (79.9%) 0.547
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Additionally, the corresponding Brier scores were 
0.087, 0.096, and 0.112, reflecting higher consistency 
between predicted probabilities and actual outcomes.

Clinical utility
The results of the DCA showed that, in both the training 
set (threshold: 2%-97%) and the external test set (thresh-
old: 1%-96%), the net benefit of using the nomogram to 
predict IFD deterioration was higher than that of the 
other strategies, including using independent predic-
tors alone, treat all, or treat none. In the internal valida-
tion set, the net benefit of the nomogram was superior 
to these strategies at threshold of 1%-21% and 23%-94%. 
However, at a threshold of 22%, the net benefit of using 
fever to predict IFD deterioration was slightly higher 
than that of the nomogram, as shown in Fig. 5.

Discussion
In this study, we developed a prototype nomogram for 
prediction of IFD deterioration based on baseline inde-
pendent predictors, which demonstrated strong pre-
dictive performance. In view of the high death risk of 

Md median, IQR interquartile range

Table 2  (continued)

Baseline variables Training set (n = 336) Validation set (n = 144) P 
value

 > 4 (lymphocytosis) 6 (1.8%) 3 (2.1%) 0.826

  Hemoglobin, g/L, n (%)

  30—59 (severe) 6 (1.8%) 6 (4.2%) 0.126

  60—89 (moderate) 38 (11.3%) 17 (11.8%) 0.876

  90—120 (mild) 55 (16.4%) 29 (20.1%) 0.319

  > 120 (non-anemia) 237 (70.5%) 92 (63.9%) 0.151

  Platelet, g/L, n (%)

 < 100 (thrombocytopenia) 28 (8.3%) 12 (8.3%) 1.000

 100—300 (normal) 238 (70.8%) 102 (70.8%) 1.000

 > 300 (thrombocytosis) 70 (20.8%) 30 (20.8%) 1.000

Fig. 2  Selection of optimal predictors using the LASSO regression. Notes: a Determination of optimal regularization parameter λ of the LASSO 
model to select the optimal predictors for IFD deterioration. When log(λ) is -3.79, LASSO shows the best predictive performance with the minimum 
number of predictors and regression errors, where the coefficients of 27 out of 43 baseline variables are shrunk to zero. b The coefficient 
profile of LASSO. The trajectory of each IFD-related feature coefficient is observed in the LASSO coefficient profiles with the changing of the λ 
values. LASSO, least absolute shrinkage and selection operator; IFD, invasive fungal disease

Table 3  Statistics of the independent predictors for IFD 
deterioration in training set

IFD invasive fungal disease, VIF variance inflation factor, SOT solid organ 
transplant, CHD chronic heart disease, Comorbidities with one or more 
comorbidities

Variables VIF Wald Z Odds ratio (95%CI) P value

SOT 1.05 2.23 13.81 (1.37—138.85) 0.026

CHD 1.05 2.41 11.43 (1.57—83.2) 0.016

Comorbidities 1.08 2.44 3.48 (1.28—9.48) 0.015

Fever 1.28 3.54 4.2 (1.9—9.32) < 0.001

Leukocytosis 1.09 3.47 4 (1.83—8.76) < 0.001

Non-anemia 1.36 -2.94 0.3 (0.14—0.67) 0.003

Thrombocytopenia 1.27 2.89 4.95 (1.67—14.63) 0.004
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patients with deteriorated IFD, the nomogram could 
not only provide clinicians with an effective prediction 
tool for early identification of IFD deterioration, but 
also enable them to implement timely intervention and 

improve the prognosis of patients. The nomogram is of 
simplicity, non-invasiveness, and feasibility, and it can 
be widely used in outpatients, inpatients, healthcare 
facilities with limited resource, and even home care.

The nomogram achieved AUCs of 0.91 and 0.90 in 
the internal validation set and external test set, respec-
tively, slightly higher than the AUC of 0.88 in the train-
ing set, which is uncommon. However, the calibration 
curves for the three datasets showed good consistency 
between the model’s predicted outcomes and the actual 
risk of IFD deterioration, validating the model’s accu-
racy. The Hosmer–Lemeshow test and Brier score also 
indicated no significant differences between the pre-
dicted and actual risks, further confirming the good-
ness of fit of the model. The DCA affirmed the clinical 
utility of the nomogram model. These results suggest 
that the model has strong robustness and a low risk of 
overfitting. Therefore, the slightly higher AUC values in 
the internal validation and external test sets may indi-
cate the model’s stronger generalization ability. It is 
worth noting that studies on nomogram models have 

Fig. 3  Predictive nomogram for early detection of IFD deterioration. Notes: Each independent predictor is represented as 0 for "no" and 1 for "yes", 
and the corresponding score is marked on the uppermost points axis. Total score for all predictors can be obtained by adding the scores of each 
predictor, and the bottom horizontal axis shows the corresponding risk of IFD deterioration. IFD, invasive fungal disease; SOT, solid organ transplant; 
CHD, chronic heart disease; Comorbidities, one or more comorbidities

Table 4  Percentage of independent predictors of IFD 
deterioration in external test set

IFD invasive fungal disease, SOT solid organ transplant, CHD chronic heart 
disease, Comorbidities with one or more comorbidities

Independent predictors, n (%) Serious (n = 65) Non-
serious 
(n = 191)

SOT 7 (10.8) 8 (4.2)

CHD 23 (35.4) 15 (7.9)

Comorbidities 65 (100) 117 (61.3)

Fever 49 (75.4) 27 (14.1)

Leukocytosis 39 (60) 29 (15.2)

Non-anemia 17 (26.2) 135 (70.7)

Thrombocytopenia 8 (12.3) 8 (4.2)
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Fig. 4  Receiver operating characteristic curves and calibration curves of the nomogram. Notes: Figure a, b, and c indicate the AUCs 
of the nomogram, with sensitivities and specificities, and d and e and f denote the calibration curves in the training set, internal validation set 
and external test set, respectively. The horizontal axis of figure d, e, and f show the predicted probability of IFD deterioration and the vertical axis 
show the actual probability. The predictive performance of the nomogram (black line) closer to the ideal prediction line (dotted line) represents 
a higher predictive accuracy. AUC, area under the receiver operating characteristic curve

Fig. 5  Decision curve analysis of the prediction nomogram. Notes: Decision curve analysis of the nomogram prediction in the training set (a), 
internal validation set (b), and external test set (c). The vertical axis represents the net benefit, while the horizontal axis denotes the threshold 
probability. The black horizontal line corresponds to the “treat none” strategy, assuming no patients receive intervention. The gray slanted line 
corresponds to the “treat all” strategy, assuming all patients are predicted to be positive and thus receive intervention. The farther the decision curve 
is above these two reference lines, the greater the net clinical benefit of the model. IFD, invasive fungal disease; SOT, solid organ transplant; CHD, 
chronic heart disease; Comorbidities, one or more comorbidities
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also observed higher AUC values in the validation set 
compared to the training set, which typically reflects 
better model adaptation to external datasets [33–35].

Of the independent predictors identified in our study, 
SOT exhibits the greatest power in prediction of IFD 
deterioration, consistent with its role as a well-known 
host factor for IFD [19]. Fever and comorbidities are com-
mon in most IFD patients, but they may not usually be 
considered as risk factors for disease deterioration, and 
neglect may complicate diagnosis [6]. Cardiac disease has 
been proven to be an indicator of impending candidemia 
in ICU patients [36], and CHD could increase the risk of 
bacterial and fungal superinfection in critical COVID-
19 patients [37]. It was reported that thrombocytopenia 
is clinically relevant and associated with patients’ prog-
noses, whereas baseline platelet count ≥ 65,000 platelets/
mm3 is an independent predictor of a better prognosis 
in neutropenic-related invasive aspergillosis [38]. Our 
results showed a negative association between non-ane-
mia and IFD deterioration, with a Wald Z value of -2.94, 
indicating that IFD patients with anemia might be more 
likely to develop serious illness. Anemia has been proven 
to be an independent risk factor for IFD in patients with 
multiple myeloma [39], and is associated with invasive 
non-albicans candidiasis [40]. Severe anemia is linked to 
a 3.1 times higher relative risk of death in patients with 
HIV infection and cryptococcal meningitis [41], and 3.5 
times increase in the incidence of IFD in patients with 
type 2 diabetes, while correction of anemia may improve 
the prognosis of patients [42]. These findings may be 
mechanistically linked to the critical role of heme derived 
from hemoglobin degradation in immune defense. As an 
endogenous antimicrobial peptide, heme has broad-spec-
trum antimicrobial activity and can effectively inhibit the 
growth of various bacteria and fungi, thereby non-ane-
mia may be a protective factor against the deterioration 
of IFD [43]. Additionally, our study suggests that leuko-
cytosis is an important predictor of IFD deterioration, 
which contrasts with the conclusions in the literature 
that neutropenia is a major risk factor for IFD [44, 45]. 
Nonetheless, IFD has increasingly been recognized as an 
emerging disease in non-neutropenic patients [46]. Stud-
ies have shown that leukocytosis is a significant risk fac-
tor in patients with fatal candidemia caused by Candida 
albicans who do not have neutropenia [47]. Additionally, 
leukocytosis is one of the typical manifestations of acute 
infections [48], which enhances the immune response to 
help control the infection [49]. Therefore, leukocytosis 
may indicate that IFD patients are in an active infection 
state, rather than simply being associated with fungal 
contamination or colonization [50]. Our study showed a 
higher rate of concurrent infections in the IFD deteriora-
tion cohort (79% vs. 20.3%), which may be an important 

cause of leukocytosis. Relevant research also found that 
leukocytosis was prominent in IFD patients with influ-
enza or COVID-19 [51, 52].

Currently, the nomograms and machine learning-based 
models developed for IFD mainly focus on the differen-
tial diagnosis, risk prediction of onset and death of IFD in 
patients with cancer, hematologic malignancies, COVID-
19, lower respiratory tract infections, with AUCs ranged 
of 0.84–0.86 [14–16] and 0.77–0.95 [53–56], respectively. 
Although the nomograms exhibit similar performance to 
machine learning-based models, it shows advantages in 
interpretability and clinical usability. Nomograms graphi-
cally display the weights of variables and their impact 
on prediction, simplifying complex statistical model and 
enabling clinicians to make quick decisions. While the 
processes of machine learning models are opaque, mak-
ing it difficult to directly interpret model decisions. The 
lack of transparency may lead to skepticism among cli-
nicians, and the high demands for data, computational 
resources, and training time limit their application in 
resource-limited settings [57]. Overall, our model is 
superior to most existing ones, but there exist significant 
differences in the optimal predictors. In the aforemen-
tioned studies, the independent risk factors identified 
for predicting IFD-related mortality include bloodstream 
infection, ICU admission longer than 3 days, absence of 
prior surgery, presence of metastasis, and lack of effective 
source control. These differences may arise from several 
aspects. First, our model focuses on the early detection 
of IFD deterioration based on the variables of patients at 
admission, rather than the dynamic follow-up variables 
collected during hospitalization. Second, the differences 
in the use of diagnostic criteria may have a role on the 
results. Our study predominantly relied on pathologi-
cal biopsy, while most other studies used non-invasive 
diagnostic methods, which may have an impact on the 
inclusion of patients. Third, the differences in underlying 
diseases and fungal species infected by patients may also 
account for the inconsistencies in predictive variables.

Limitations exist in our study. First, the participants 
in this study were solely from two hospitals in south-
ern China, and patients who were undiagnosed with 
IFD, had concomitant fatal infections or organ dys-
function, or had missing data exceeding 20% were 
excluded. This may have reduced the diversity of the 
data, resulting in findings that are applicable only to 
specific regions and populations, thus affecting the gen-
eralizability of the results. Second, due to the inability 
to obtain chest CT images and fungal serology results 
upon admission, these variables were not included in 
the regression analysis. For other missing data, we used 
a random forest regression algorithm for imputation. 
These factors may collectively influence the reliability 
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of the data. Third, the imbalance in the proportion of 
serious and non-serious IFD patients may introduce 
bias into the model, resulting in inaccuracy. Fourth, the 
model did not include dynamic follow-up variables. As 
a result, the model may not fully capture changes dur-
ing the disease course, which potentially leads to bias 
in predicting disease deterioration. In future studies, 
multi-center studies including patients with IFD from 
different regions with complete data are required to 
enhance the predictive performance and generalization 
of the model.

Conclusions
This study identified seven independent predictors and 
developed a predictive nomogram to assess the likeli-
hood of deterioration in IFD at the early stage of the 
disease. The nomogram demonstrated excellent predic-
tive performance across multiple datasets, with strong 
discriminatory power and good model fit. Further 
research and validation are needed to solidify the find-
ings and expand the generalization ability and applica-
bility of the nomogram in varied medical scenarios.
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