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Abstract
Background Coronavirus disease 2019 (COVID-19) have posed a great threat to human health. We carried out this 
systematic review and meta-analysis for two objectives. First, to evaluate the differences in lung infection between 
the Omicron variants and the non-Omicron strains by chest computed tomography (CT); second, to evaluate the 
differences in chest CT features between COVID-19 patients with the Omicron variants and those with non-Omicron 
strains in CT-positive cases.

Methods We searched PubMed, Embase, Web of Science and China National Knowledge Infrastructure for articles 
and performed a meta-analysis using Stata 14.0 with a random effects model.

Results Our study included a total of 8126 patients with COVID-19, 4113 with the Omicron variants, and 4013 with 
non-Omicron strains. Patients with the Omicron variants were less likely to be CT-positive (OR = 0.14, 95% CI: 0.08–
0.25), and further analysis among CT-positive patients was performed. Compared with the CT images of patients with 
non-Omicron strains, those of patients with the Omicron variants showed atypical pulmonary features (OR = 4.02, 
95% CI: 2.31–6.98). Moreover, patients with the Omicron variants typically had lesions that were mainly located in the 
center of the lung (OR = 4.51, 95% CI: 1.38–14.76) and in a single lobe (OR = 1.72, 95% CI: 1.10–2.70). The patients with 
the Omicron variants were less likely to have lesions in both lungs (OR = 0.33, 95% CI: 0.15–0.69), more likely to have 
bronchial wall thickening (OR = 1.99, 95% CI: 1.05–3.77) and less likely to have the crazy-paving pattern (OR = 0.51, 95% 
CI: 0.33–0.81), linear opacity (OR = 0.26, 95% CI: 0.12–0.60), and vascular enlargement (OR = 0.54, 95% CI: 0.35–0.84).

Conclusions Through meta-analysis, which yields the highest level of evidence for evidence-based medicine, we 
further confirmed that there were significant differences in the distribution and manifestations of lesions between 
patients with non-Omicron strains and those with the Omicron variants on chest CT. The variation in SARS-CoV-2 has 
never stopped. Our findings are useful for the diagnosis and treatment of new SARS-CoV-2 variants that may appear 
in the future and provide a basis for public health decision-making.

PROSPERO registration number CRD42024581869.
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Introduction
Coronavirus disease 2019 (COVID-19) is caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), a coronavirus with the natural capacity to 
undergo mutation and antigenic variation over time. 
The World Health Organization (WHO) has succes-
sively designated and confirmed the following five severe 
acute SARS-CoV-2 variants: Alpha, Beta, Gamma, Delta, 
and Omicron [1]. Omicron are the most mutated SARS-
CoV-2 variants [2], which overtook other variants in 
terms of prevalence in just 9 weeks and quickly became 
the primary variants in the world [3]. Although the WHO 
announced the end of the COVID-19 public health 
emergency in May 2023 [4], COVID-19 will not disap-
pear. There will likely be seasonal peaks similar to those 
of influenza in the future [5]. In July 2024, there were as 
many as 18,384 new cases of COVID-19 in Guangdong 
Province, China alone, all of which were Omicron vari-
ants [6].

Although real-time reverse transcription polymerase 
chain reaction (RT-PCR) is considered the gold stan-
dard test to determine confirmed cases, clinicians often 
recommend chest computed tomography (CT) scanning 
as a supplementary diagnostic test or a clinical triage if 
patients have severe symptoms that need immediate 
attention. Evaluating CT imaging features of COVID-19 
has become crucial for effectively managing patients in 
clinical practice [7]. The Radiological Society of North 
America (RSNA) Expert Consensus Document clas-
sifies CT images of COVID-19 pneumonia into the 
following four categories: typical appearance, indetermi-
nate appearance, atypical appearance, and negative for 
COVID-19 pneumonia [8]. Typical features of COVID-19 
pneumonia include ground-glass opacities (GGOs) with 
or without consolidation in a peripheral, posterior, and 
diffuse or lower lung zone distribution and with a round 
appearance or a crazy paving pattern. Bronchial wall 
thickening and mucoid impactions, which are commonly 
seen in infections, are not typically observed; atypical 
features include bronchial wall thickening, central distri-
bution, isolated lobar or segmental consolidation without 
GGOs, lung cavitation, and smooth interlobular septal 
thickening with pleural effusion [2, 8]. The emergence of 
Omicron changed the spread of the virus and the sever-
ity of the disease. When evaluating patients infected with 
COVID-19 pneumonia caused by Omicron using CT 
scans, radiologists should exercise caution when applying 
conventional criteria [9].

The conclusions of different studies are sometimes 
conflicting. For example, Zeng et al. [2] noted that CT-
positive patients with non-Omicron strains presented 

more GGOs than those with the Omicron variants did, 
whereas Granata et al. [10] and Zhang et al. [11] did not 
find significant differences in the proportion of GGOs 
observed between the two groups of patients. Meta-
analysis is a cornerstone of evidence-based medicine, 
which represents a systematic approach to clinical deci-
sion-making using high-quality evidence. We carried out 
this systematic review and meta-analysis for two pur-
poses. First, to evaluate the differences in lung infection 
between the Omicron variants and the non-Omicron 
strains by chest CT; second, to evaluate the differences in 
chest CT features between COVID-19 patients with the 
Omicron variants and those with non-Omicron strains in 
CT-positive cases.

Materials and methods
This article was conducted in accordance with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement.

Eligibility criteria
Our research included studies that met the following 
requirements: (1) chest images obtained via CT; (2) the 
article included an experimental group and a control 
group; and (3) the patients in the experimental group 
were all COVID-19 patients infected with the Omicron 
variants, and the patients in the control group were 
infected with one or more of the following strains of 
SARS-CoV-2: the original strain, Alpha, Beta, Gamma or 
Delta.

The exclusion criteria were as follows: (1) X-ray data, 
(2) case reports, (3) nonhuman studies, (4) data dupli-
cation, (5) reviews, comments, or abstracts, and (6) the 
sample size of the experimental group or control group 
was less than five.

Information source
We searched for articles published before August 20, 
2024, in PubMed, Embase, Web of Science, and China 
National Knowledge Infrastructure. To collect as much 
data as possible, we did not limit the language of the arti-
cles and searched for topics in the title and abstract.

Search strategy
The search strategy was as follows: (Omicron[Title/
Abstract]) AND ((((((Chest Images[Title/Abstract]) OR 
(Chest Image[Title/Abstract])) OR (CT[Title/Abstract])) 
OR (Computed Tomography[Title/Abstract])) OR 
(Radiology[Title/Abstract])) OR (Radiological[Title/
Abstract]))

Keywords Omicron, Coronavirus disease 2019, Computed tomography, Systematic review, Meta-analysis
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Study selection process
All articles retrieved from the database were imported 
into NoteExpress software, and duplicate articles were 
removed by matching titles, authors, and journals. We 
subsequently performed an initial screening of the arti-
cles by reading titles or abstracts. Articles that passed 
the initial screening were further screened by reading the 
full text to determine which articles were eligible for this 
meta-analysis.

Data selection process and items
Data extraction was performed by three authors to 
ensure accuracy. The first two authors independently 
screened the data, and disagreements were adjudicated 
by the third author.

The selected items included the total sample size, the 
number of COVID-19 patients with positive chest CT 
findings, CT image classification, and the distributions 
and manifestations of lesions shown by chest imaging. 
The distribution of lesions included peripheral, central, 
diffuse, and bilateral distributions, and the distribution 
of lesions in lobes. The manifestations of lesions included 
GGOs, consolidation, interlobular septal thickening, halo 
signs, reverse halo signs, lymphadenopathy, pleural effu-
sion, bronchial wall thickening, crazy‒paving patterns, 
air bronchogram, bronchiectasis, linear opacities, and 
vascular enlargement.

Study risk of bias assessment
The Newcastle–Ottawa quality assessment scale was 
used to assess the quality and risk of bias of the included 
articles. Each article had a perfect score of nine, and an 
article with a score of seven or more indicated that it was 
a low risk of bias and high quality.

Reporting bias assessment
Given that the number of included articles in our results 
was mostly less than 10, we did not use funnel plots. 
Instead, we employed Egger’s test to evaluate reporting 
bias, with a p value > 0.05 indicating the absence of bias.

Statistical analysis
Since our results were all dichotomous variables, odds 
ratios (ORs) were used for data analysis and evaluation, 
and the confidence interval (CI) was set at 95%. The I2 
statistic was used to quantify heterogeneity and subgroup 
analysis was used to explore the source of heterogeneity: 
I2 ≤ 50% indicated low heterogeneity, 50 < I2 ≤ 75% indi-
cated moderate heterogeneity, and I2 > 75% indicated high 
heterogeneity [12]. The statistical software used was Stata 
14.0, and we used a random effects model to estimate the 
effect value. For each result, a p value of the z-test < 0.05 
was considered statistically significant.

Results
Study selection
A total of 1796 articles were retrieved, including 353 from 
PubMed, 403 from Embase, 670 from the Web of Science, 
and 370 from the China National Knowledge Infrastruc-
ture. A total of 537 duplicate articles were removed using 
the duplicate identification function of NoteExpress soft-
ware. Next, 831 and 316 irrelevant articles were excluded 
by reading the titles and abstracts, respectively. Among 
the remaining 110 articles, 92 were further excluded after 
the full texts were read. The detailed screening procedure 
is shown in Fig. 1.

Risk of bias in studies
The risk of bias in studies was assessed via the Newcas-
tle–Ottawa quality assessment scale (Additional Table 1). 
We found that all studies included were of high quality 
and had a low risk of bias.

Characteristics and results of individual studies
All the SARS-CoV-2 infections in the studies were con-
firmed via RT‒PCR, and COVID‒19 pneumonia was 
distinguished on the basis of positive imaging findings 
of lung involvement. The samples in three studies were 
from patients with COVID-19 pneumonia [2, 10, 11], and 
the samples in the other 15 studies were from patients 
with SARS-CoV-2 infection [13–27]. In terms of strain 
type, the Omicron variants were examined in all the stud-
ies. Ten studies included the original strain [2, 11, 15–17, 
19, 21, 22, 25, 26], six studies included the Alpha variant 
[10, 14, 18, 21, 22, 27], two studies included the Beta vari-
ant [21, 22], one study included the Gamma variant [21], 
and 11 studies included the Delta variant [10, 13, 16, 18, 
20–24, 26, 27]. Except for three studies [2, 19, 22], all the 
other studies reported the number of doctors who inter-
preted the chest CT scans and discussed the experience 
of these radiologists. All the studies included provided 
the criteria used for determining CT-positivity. In addi-
tion, the severity of symptoms, hospitalization, comor-
bidities, treatment protocols, and ages of the COVID-19 
patients are listed in Table 1.

Results of syntheses
CT-positive
We included 15 studies [13–27] to analyze the differences 
in lung infection between Omicron and non-Omicron 
strains (Table  2). Patients with the Omicron variants 
were less likely to be CT-positive (OR = 0.14, 95% CI: 
0.07–0.27, I2 = 94.9%, p < 0.001; Fig.  2). Subgroup analy-
sis revealed that non-Omicron strains contained one 
strain (OR = 0.15, 95% CI: 0.05–0.44, I2 = 94.7%, p < 0.001; 
Fig. 2) or multiple strains (OR = 0.13, 95% CI: 0.05–0.30, 
I2 = 93.7%, p < 0.001; Fig.  2), and the differences were all 
statistically significant.
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CT image classification
We further studied the differences in the imaging charac-
teristics among CT-positive patients (Table 3) and found 
that, compared with the chest CT images of patients 
with non-Omicron variants, those of patients with the 
Omicron variants showed atypical pulmonary features 
(OR = 4.02, 95% CI: 2.31–6.98, I2 = 0.0%, p < 0.001; Addi-
tional Fig.  1), with fewer having typical pulmonary fea-
tures (OR = 0.28, 95% CI: 0.13–0.60, I2 = 71.0%, p = 0.001; 
Additional Fig.  2). There was no significant difference 
in indeterminate pulmonary appearance between the 

two groups (OR = 1.96, 95% CI: 0.93–4.12, I2 = 64.1%, 
p = 0.076; Additional Fig. 3).

Distributions of lesions
Among CT-positive patients, we compared the distribu-
tion of lung lesions on chest images between Omicron 
patients and non-Omicron patients in three ways (Addi-
tional Table  2): (1) Omicron patients had lesions more 
centrally located in the lung (OR = 4.51, 95% CI: 1.38–
14.76, I2 = 0.0%, p = 0.013; Fig.  3); there were no signifi-
cant differences in the distribution of lesions in diffuse 

Fig. 1 Flow diagram of the article selection process
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(OR = 1.21, 95% CI: 0.44–3.33, I2 = 75.9%, p = 0.706; Fig. 3) 
and peripheral (OR = 0.67, 95% CI: 0.30–1.50, I2 = 69.4%, 
p = 0.336; Fig. 3) forms between the two groups; (2) com-
pared with non-Omicron patients, bilateral lesions were 
less common in the Omicron patients (OR = 0.33, 95% CI: 
0.15–0.69, I2 = 53.2%, p = 0.003; Additional Fig. 4); (3) we 
also compared the distribution of lesions in a single lobe 
and multiple lobes between Omicron and non-Omicron 
patients, and found that Omicron patients had more 
lesions distributed in a single lobe (OR = 1.72, 95% CI: 
1.10–2.70, I2 = 11.1%, p = 0.017; Additional Fig. 5).

Manifestations of lesions
The manifestations of the lesions are detailed in Addi-
tional Table 3. On chest images of CT-positive patients, 
Omicron patients presented more bronchial wall thick-
ening (OR = 1.99, 95% CI: 1.05–3.77, I2 = 21.0%, p = 0.035; 
Fig.  4), whereas crazy-paving pattern (OR = 0.51, 95% 
CI: 0.33–0.81, I2 = 37.2%, p = 0.004; Fig. 4), linear opacity 
(OR = 0.26, 95% CI: 0.12–0.60, I2 = 50.0%, p < 0.001; Fig. 4) 
and vascular enlargement (OR = 0.54, 95% CI: 0.35–0.84, 
I2 = 0.0%, p = 0.006; Fig. 4) were rarely observed. Although 
Omicron patients had fewer GGOs than non–Omicron 
patients, the difference was not statistically significant 
(OR = 0.68, 95% CI: 0.42–1.09; I2 = 56.3%, p = 0.110; Addi-
tional Fig. 6). There was no significant difference between 
the two groups in consolidation (OR = 1.10, 95% CI: 0.64–
1.88, I2 = 75.5%, p = 0.740; Additional Fig. 7), reverse halo 
sign (OR = 0.90, 95% CI: 0.20–4.02, I2 = 34.1%, p = 0.893; 
Additional Fig. 8), lymphadenopathy (OR = 0.76, 95% CI: 
0.28–2.01, I2 = 49.9%, p = 0.575; Additional Fig.  9), inter-
lobular septal thickening (OR = 1.03, 95% CI: 0.28–3.77, 
I2 = 71.0%, p = 0.960; Additional Fig. 10), pleural effusion 
(OR = 1.19, 95% CI: 0.47–3.03, I2 = 71.0%, p = 0.717; Addi-
tional Fig. 11), halo sign (OR = 1.15, 95% CI: 0.13–10.01, 
I2 = 74.6%, p = 0.900; Additional Fig. 12), air bronchogram 
(OR = 0.40, 95% CI: 0.02–6.79, I2 = 71.2%, p = 0.529; Addi-
tional Fig.  13), and bronchiectasis (OR = 1.75, 95% CI: 
0.80–3.82, I2 = 0.0%, p = 0.158; Additional Fig. 14).

Reporting biases
Egger’s test was used for reporting bias analysis, and 
none of the results were found to have reporting bias 
(Additional Figs. 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 
31, 32, 33, 34, 35, 36, 37, 38 and 39).

Heterogeneity
In our study, most results showed good heterogeneity, 
and only three showed high heterogeneity. Because the 
result in Fig.  3B included only four articles, we did not 
analyze them in subgroups. For the other two outcomes, 
we performed a subgroup analysis by using countries, 
type of strains in non-Omicron patients, and number of 
strains in non-Omicron patients, but the exact source c A
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of heterogeneity was not found (Fig.  2 and Additional 
Figs. 15, 16, 17, 18 and 19).

Discussion
To the best of our knowledge, our study is the first sys-
tematic review and meta-analysis to compare the dif-
ferences in chest CT features between patients infected 
with the Omicron variants and those infected with non-
Omicron strains in detail. The main reason the Omicron 
variants have become the most prevalent SARS-CoV-2 
variants is its high infectivity. Angiotensin-converting 
enzyme 2 (ACE2), the only experimentally confirmed 
SARS-CoV-2 receptor, can facilitate the entry of viruses 
into cells, and its expression level is considered a marker 
of susceptibility to COVID-19 [28]. The Omicron vari-
ants require less energy to engage with ACE2 than the 
Delta variant, which means that the Omicron variants are 
more vulnerable to ACE2 attachment than the Delta vari-
ant [29]. In addition, the horde of > 50 mutations atone 
for the exalted binding capacity of the Omicron variants 
to ACE2 receptor and increased splitting of host furin at 
the spike protein, which further increases the infectivity 
and transmissibility of these variants [30].

In our study, non-Omicron samples containing one 
or multiple strains showed more lung infections than 
Omicron samples. A study by the University of Hong 
Kong found that the Omicron variants infect human 
bronchi more than 70 times faster than the Alpha vari-
ant and have a higher replication speed. In contrast, the 
original strain infects the lung more than 10 times faster 
than the Omicron variants, and the replication speed is 
also faster than the latter [31]. Hui et al. found that the 
Omicron variants were more sensitive to a cathepsin 
inhibitor but less dependent on transmembrane protease 

serine 2 (TMPRSS2) activity than the Delta variant. This 
implies that the Omicron variants enter cells mainly via 
the endocytic pathway, whereas the Delta variant prefers 
to fuse at the cell surface. Using a widespread endocytic 
pathway, the Omicron variants can infect cells express-
ing ACE2 independently of the presence of TMPRSS2, 
thus potentially expanding the cellular spectrum for 
infection. According to single-cell sequencing data, 
cells coexpressing ACE2 and cathepsins are more com-
mon in the upper airway than cells coexpressing ACE2 
and TMPRSS2, which may help explain why Omicron 
is more capable of self-replicating in the bronchi [32]. 
Studies have shown that, compared with lower respira-
tory symptoms such as cough and shortness of breath in 
patients infected with non-Omicron strains, upper respi-
ratory symptoms such as sore throat were more common 
in patients infected with the Omicron variants [14, 17]. 
Kontopodis et al. noted that the “NYNYLYRLF” peptide 
is an essential amino acid sequence in the RBM region 
(448–456 positions). This tyrosine (Y)-enriched peptide 
has 2 contact sites (Y449 and Y453) and is known as the 
NF9 peptide; in contrast to the Delta variant, the NF9 
amino acid content of the Omicron variants remains 
unchanged, indicating that the NF9 peptide may lead to 
early activation of the immune system and the release of 
efficient cytokines, resulting in a faster immunological 
response and a reduction in SARS-CoV-2 pathogenicity 
[33]. The inability of the Omicron variants to effectively 
inhibit the interferon immune response of host cells may 
also lead to a reduced severity of infection [34]. Interfer-
ons are a group of proteins released by infected cells that 
signal to other system cells to resist the growth of viruses; 
this is a critical mechanism in fighting the replication of 
many viruses, including SARS-CoV-2 [35]. Another rea-
son for the lower prevalence of COVID-19 pneumonia in 
the Omicron wave may be vaccination. Vaccination has 
been shown to reduce the severity of pneumonia [36]. 
Although the ability of the Omicron variants to escape 
vaccine immunity is greater than that of non-Omicron 
strains, the vaccination rate of COVID-19 patients dur-
ing the Omicron epidemic was significantly higher than 
in the previous period [37–39].

Our study revealed that atypical pulmonary findings, 
such as the reverse halo sign, lymphadenopathy and pleu-
ral effusion, could not be used as imaging indicators to 
distinguish between the two groups of patients. However, 
we also found that radiologists classified more chest CT 
images of CT-positive patients with the Omicron vari-
ants as having atypical pulmonary features, suggesting 
that although not all atypical radiological features were 
significantly different between patients with non–Omi-
cron strains and patients with the Omicron variants, 
atypical pneumonia is still more common in CT-positive 
patients with the Omicron variants.

Table 2 Differences in lung infection between the Omicron 
variants and the non-Omicron strains
Author Omicron patients non-Omicron patients

Number CT-positivity Number CT-positivity
Yoon et al. [13] 88 66 88 71
Yang et al. [14] 374 5 38 33
Lin et al. [15] 37 11 31 10
Han et al. [16] 168 73 335 308
Kirca et al. [17] 16 12 960 589
Ito et al. [18] 231 79 87 67
Gu et al. [19] 109 20 87 80
Askani et al. [20] 17 11 43 38
Nagaoka et al. [21] 48 16 137 76
Liu et al. [22] 119 37 313 287
Crombe et al. [23] 1629 1151 1080 945
Tsakok et al. [24] 40 25 66 56
Wang et al. [25] 416 134 128 123
Liu et al. [26] 562 63 205 149
Trinh et al. [27] 79 36 199 124
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We focused on the chest imaging features of CT-pos-
itive patients infected with the Omicron variants and 
those infected with non-Omicron strains. Our study 
revealed that lesions in non-Omicron patients were 
more commonly observed in multiple lobes and more 
frequently involved bilateral lungs. This suggests that, 

even in CT-positive patients, infection with non-Omi-
cron strains would cause more extensive lung injury than 
infection with the Omicron variants.

We also found that lesions in Omicron patients were 
more centrally concentrated. This may be because non-
Omicron strains form patchy GGOs through infection, 

Table 3 CT image classification among CT-positive patients
Author Omicron Non-Omicron

Number Typical 
appearance

Indeterminate 
appearance

Atypical 
appearance

Number Typical 
appearance

Indeterminate 
appearance

Atypical 
appearance

Zhang et al. [11] 69 55 12 2 96 79 15 2
Yoon et al. [13] 66 28 27 11 71 50 18 3
Han et al. [16] 73 48 13 12 308 283 11 14
Kirca et al. [17] 12 7 2 3 589 392 164 33
Askani et al. [20] 11 2 5 4 38 25 9 5
Tsakok et al. [24] 25 16 NA NA 56 55 NA NA

Fig. 2 Forest plot of differences in lung infection between the Omicron variants and the non-Omicron strains
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and their main target cells are reportedly alveolar type II 
epithelial cells; however, there are relatively fewer alveoli 
in the central region of the lung [18]. GGOs are radiologic 
opacities that do not obscure the contours of close bron-
chovascular structures, indicating the presence of tran-
sudate or exudate in the alveoli. Still, the fluid amount is 
not large enough to create a stark contrast with the sur-
rounding air spaces [40]. GGOs are commonly observed 
in the early stages of many inflammatory diseases, such 
as allergic pneumonia, viral infection, and mycoplasma 
infection [41]. After infection in the upper airway, owing 
to inefficient replication in the human lung [42], prolif-
eration or invasion of the Omicron variants can be highly 
suppressed when the immune response or specific physi-
ological defenses have been effectively induced. When 
a less effective immune response is induced after upper 
airway infection, proliferation or invasion of the Omi-
cron variants in the lungs may be achieved, which mostly 
reflects pulmonary GGO lesions [21]. Although we found 
no significant difference in GGOs between Omicron and 
non-Omicron patients, the p value of 0.110 was close to 

the 0.05 cutoff. The results may change significantly if a 
meta-analysis is included in new studies.

Bronchial wall thickening is a marker of airway infec-
tion, and SARS-CoV-2 infection can lead to bronchial 
wall swelling [43]. Because the Omicron variants have 
an increased ability to infect the bronchus than non-
Omicron strains, this may contribute to bronchial wall 
thickening being more common in patients infected with 
the Omicron variants. Our study revealed that, in CT-
positive patients, the chest images of Omicron patients 
presented less crazy-paving pattern, linear opacity, and 
vascular enlargement. Crazy-paving is often used in 
imaging because its appearance resembles a path made 
of concrete fragments. This term was initially a pathog-
nomonic sign in patients diagnosed with pulmonary 
alveolar proteinosis [44]. The pathophysiology of crazy-
paving in COVID-19 is similar to that of Middle East 
respiratory syndrome and severe acute respiratory syn-
drome, which involve the pulmonary alveolar airspace 
and interstitial networks [45]. It starts with host cell entry 
of the virus into alveolar epithelial cells after inhalation 
via the upper respiratory pathway. The viral spike protein 

Fig. 3 Forest plot of differences in the distribution of lung lesions on chest images between Omicron and non-Omicron patients: (A) central, (B) diffuse, 
and (C) peripheral
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attaches to ACE2 and transmembrane serine protease 2 
[45, 46]. Once the host macrophage recognizes this anti-
gen, a downstream cascade occurs, leading to excessive 
activation of proinflammatory cytokines, referred to as a 
storm. This cytokine storm leads to a hyperinflammatory 
response, leading to acute lung injury and respiratory 
failure [47]. Linear opacity and vascular augmentation 
are related to the clinical severity of COVID-19 patients, 
and these CT features are more easily observed in 
severe cases of COVID-19 [47, 48]. The linear opacity 
of COVID-19 patients may be caused by subsegmental 
atelectasis or secondary organizing pneumonia [49]. A 
study by Bai et al. revealed that vascular thickening was 
more common in patients with COVID-19 pneumonia 
than in those with non-COVID-19 pneumonia, consid-
ered one of the most distinguishing features of COVID-
19 [50]. The vascular enlargement of COVID-19 patients 
may be attributed to a combination of coronavirus-
induced direct cytopathic effects and virus-triggered host 
immune reactions, accompanied by a massive accumula-
tion of proinflammatory factors in the lung characterized 
by endothelial injury and increased permeability [51].

The variation in SARS-CoV-2 has never stopped. 
Studying the differences in chest imaging findings 
between Omicron and non-Omicron patients is useful 
for the diagnosis and treatment of new SARS-CoV-2 vari-
ants that may appear in the future. Understanding the 
differences in the CT features of different strains is help-
ful for distinguishing between different types of infection 
more accurately and improving the accuracy of diagnosis. 
Different strains may cause different lung diseases. Clari-
fying these differences is helpful for formulating more 
targeted treatment plans and improving the prognosis of 
patients. Distinguishing the type of infection associated 
with different strains by CT features is helpful for track-
ing the spread of the virus, thereby providing a basis for 
public health decision-making, aiding in the rational allo-
cation of medical resources, and reducing pressure on 
the medical system.

Limitations
Our study had limitations: Most of our data came from 
retrospective research, and there might have been selec-
tion bias. The vaccination rate of Omicron patients is 

Fig. 4 Forest plot of differences in the manifestations of lung lesions on chest images between Omicron and non-Omicron patients: (A) bronchial wall 
thickening, (B) crazy-paving pattern, (C) linear opacity, and (D) vascular enlargement
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often higher than that of non-Omicron patients. Still, in 
the articles we retrieved, we could not extract enough 
data from patients with the same vaccination status for 
meta-analysis, which may have had a certain impact on 
the comparison of the chest CT features of the two types 
of patients; the CT images were obtained from different 
hospitals, and the scanning parameters and image quality 
were different, which might have affected the interpreta-
tion of certain imaging details. Chest CT features differ 
between ICU and non-ICU patients, and some lung CT 
features, such pleural effusion, are more common in ICU 
patients. Among the articles we included, only the article 
by Granata et al. [10] revealed detailed information about 
ICU patients. Moreover, chest CT data for ICU patients 
was not reported in the other articles; thus, we could not 
conduct related studies.

Conclusions
Patients infected with non-Omicron strains presented 
more imaging changes on chest CT than those infected 
with the Omicron variants. Even among CT-positive 
patients, the distributions of lesions in the lungs of non-
Omicron patients were more extensive, and the mani-
festations of lesions were more severe. These results 
suggested that non-Omicron strains had a stronger abil-
ity to infect the lungs and might have a worse impact on 
the prognosis of COVID-19 patients.
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