SYSTEMATIC REVIEW

The burden and predictors of hospitalacquired infection in intensive care units across Sub-Sahara Africa: systematic review and metanalysis

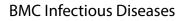
Ousman Adal^{1*}, Yeshimebet Tamir Tsehay², Birhanu Ayenew³, Teshager Woldegiyorgis Abate⁴, Gebrehiwot Berie Mekonnen⁵, Sileshi Mulatu⁶, Sosina Tamre Mamo¹, Temesgen Ayenew⁷, Mengistu Abebe Messelu⁷ and Asnake Gashaw Belayneh¹

Abstract

Background Hospital-acquired infection (HAI) refers to an infection that occurs during hospitalization and typically manifests 48 h after admission. Evidence suggests that the prevalence of HAIs in Sub-Saharan Africa (SSA) is significantly higher compared to other regions. These infections remain a major concern in low-income countries, contributing to elevated morbidity and mortality rates. This study aimed to assess the burden and identify predictors of HAIs in intensive care units (ICUs) across SSA.

Methods This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We searched PubMed, Scopus, Embase, Web of Science, Africa Index Medicus, ScienceDirect, HINARI, and Google Scholar to identify relevant studies published in English. This systematic review encompasses 44 articles published between 2003 and 2024, with the majority (22 articles) published recently between 2020 and 2024. The actual database search was conducted between January 1, 2025, and February 1, 2025. Articles irrelevant to this study's objectives, those without abstracts or full texts, unpublished reports, editorials, studies that did not clearly define outcomes, and studies written in languages other than English were excluded. The analysis was conducted using Stata version 17. The protocol was registered with PROSPERO under the registration number CRD 63,194,923,892. Quality assessment was performed using the Newcastle-Ottawa Scale, and data extraction followed the Joanna Briggs Institute methodology.

Results A total of 44 primary samples were included in this meta-analysis. Using the random effect DerSimonian model, we showed that the pooled prevalence of hospital-acquired infections (HAIs) in intensive care units was 28.22% (95% CI: 23.61–32.81). Determinants of HAIs in the intensive care units included neonatal or advanced age (>50 years), intubation, trauma, surgery, presence of comorbidities, catheterization, prolonged hospital stay, and HIV-positive status.


*Correspondence: Ousman Adal Adalousman5@gmail.com

BMC

Full list of author information is available at the end of the article

vecommons.org/licenses/by-nc-nd/4.0/.

Open Access

Page 2 of 14

Conclusion and recommendations Individuals in extreme age groups, those with chronic diseases or immunocompromised conditions, and patients with specific risk factors (e.g., catheterization, prolonged hospitalization) were more prone to HAIs. Strengthening the quality of care and implementing effective infection control measures are recommended to reduce the burden of healthcare-associated infections (HAIs) in sub-Saharan Africa.

Keywords Hospital-acquired infection, Intensive care unit, Prevalence

Introduction

Hospital-acquired infections (HAIs) are infections that develop after 48 h of admission to a hospital [1]. These infections remain a significant issue in low-income countries, contributing to high morbidity and mortality rates [2]. A recent study highlighted that HAIs pose a major challenge in hospital settings, particularly in intensive care units (ICUs). The systematic review revealed that the pooled prevalence of HAIs, particularly sepsis acquired in hospitals, was 15.4 cases per 1,000 patients, with individual study estimates ranging from 7.4 to 29.5 cases per 1,000 patients. In ICUs, the prevalence was notably higher at 44.8 cases per 1,000 patients, indicating a greater risk compared with other wards [3]. In contrast, high-income countries have reported a significant reduction in HAI rates, ranging from 35 to 55%, due to multifaceted interventions. For instance, the incidence of ventilator-associated pneumonia was reported to be 0.46%, while catheter-associated urinary tract infections had an incidence of 0.45% [4]. A study conducted in Southeast Asia found that the overall prevalence of HAIs was 64.91%, which is significantly higher than that observed in high-income countries [5].

Globally, HAIs are a leading cause of morbidity and mortality, especially in ICUs. Among these infections, hospital-acquired pneumonia and catheter-associated urinary tract infections are the most prevalent [6]. Existing research indicates that HAIs occur more frequently in ICUs than in other hospital settings, such as general wards. Even in high-income countries, HAI in ICUs continues to be a major contributor to mortality, particularly among surgical and trauma patients, as well as those who are ventilated or immunocompromised [7–9]. Survey methods in the United States have shown that gramnegative bacteria such as Klebsiella pneumoniae, E. coli, and Pseudomonas are common pathogens responsible for nosocomial infections in ICUs. Additionally, grampositive bacteria such as Staphylococcus aureus and streptococci are also prevalent [7]. Reports indicate that HAI-caused multidrug-resistant gram-negative bacteria (e.g., Acinetobacter and Pseudomonas species) are frequently encountered, while resistance among Staphylococcus aureus is less commonly reported [10].

Research has demonstrated that infection prevention practices such as central line bundles, chlorhexidine body wash, hand hygiene interventions, and comprehensive ICU care are essential for mitigating the prevalence of HAIs [10]. Daily bathing with chlorhexidine gluconate has been estimated to reduce ventilator-associated pneumonia in the ICU by approximately 18% [11]. Key methods for preventing surgical site infections include hand hygiene, environmental disinfection, injection and medication safety, the use of personal protective equipment, minimization of potential exposures, appropriate reprocessing of reusable medical equipment, transmission-based precautions, timely removal of temporary medical devices when feasible, and occupational measures such as vaccination and sick leave for healthcare workers [12].

Regarding risk factors, the use of venous or arterial catheters (line sepsis), urinary catheterization, intubation, frequent changes in invasive procedures such as catheters, devices with multiple lumens, central venous parenteral nutrition, extracorporeal circulation, and blood transfusions are associated with the burden of HAIs [13–17].

Existing evidence indicates that the proportion of HAIs in Sub-Saharan Africa is substantially higher than that in other regions of the world. Original articles that estimate the burden of HAIs in sub-Saharan Africa are available. For instance, a study in Uganda revealed that 45.5% of admitted patients in ICUs developed HAIs [18]. Similarly, a study in Mozambique found that 79% of patients admitted to ICUs had HAIs identified in vitro [19]. Another study conducted in Libya reported that 57.4% of patients suffered from HAIs in the intensive care units [20].

The nationwide prevalence of HAIs remains a significant challenge in Ethiopia [14]. A review study conducted in 2020 revealed that 16.96% of patients had HAIs, with the highest prevalence found in the ICU at 25.8%. Other wards showed prevalence rates of 24%, 23.78%, and 22.25% for pediatrics, surgical wards, and obstetrics, respectively [21]. However, studies regarding the burden of HAIs in Ethiopian ICUs are limited. The available studies indicate that 51.1% of patients acquired infections after being admitted to the ICU [22], while another study reported that more than 23% of patients acquired infections in the ICU [23]. Despite some original studies being available with conflicting results, there is a lack of comprehensive research showing the pooled prevalence or incidence rates of HAIs, specifically in ICUs [24]. Only one review study has addressed the prevalence of HAIs in hospitals without providing specific data for ICUs or

conducting subgroup analyses. This gap leaves readers with an unclear understanding of how many patients are affected by HAIs and how these infections impact hospitals and healthcare systems nationwide in terms of economics and workforce issues. Therefore, this study aims to provide updated insights into the burden and predictors of hospital-acquired infections in ICUs across Sub-Saharan Africa through a systematic review and meta-analysis to inform policymakers and stakeholders.

Research questions

What is the burden of hospital-acquired infections in intensive care units, and what factors determine the burden of hospital-acquired infections in intensive care units across sub-Saharan Africa?

Methods

Protocol and registration

We conducted this meta-analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline [25]. The protocol was registered with PROSPERO as CRD 6,319,492,389.

Inclusion and exclusion criteria

The inclusion criteria for this review were based on the Condition, Context, and Population (CoCoPop) framework [26]. This framework considered studies focusing on the prevalence of HAIs and their determinants (condition) in Sub-Saharan Africa (context) among individuals who developed HAIs in ICUs (population). Both published and unpublished studies in English were included. However, studies that examined HAIs in non-ICU wards or focused on non-HAIs were excluded from this review.

Search strategy and study identification

One week before the main search, two authors conducted a preliminary search using the PubMed database. The final electronic search was carried out from January 01, 2025, to February 01, 2025. To identify eligible studies, two/three/four/ reviewers systematically searched through different databases, including PubMed/Medline, Scopus, Embase, Web of Science, Google Scholar, Science Direct, HINARI, and Africa Index Medicus, as well as manual searches in repositories such as Bahir Dar University and Addis Ababa University. The studies included were published from 2007 to 2024. For each key concept, appropriate free-text keywords and MeSH terms were utilized, with Boolean operators such as "AND" and "OR" applied to create effective search combinations. This strategy enabled the identification of relevant articles by capturing various synonyms used in the literature.

Study selection and quality evaluation process

Following the database search, all identified studies were imported into EndNote Desktop v.20 for efficient reference management and citation generation. Duplicate sources and publications that did not directly relate to the research question were removed. After removing duplication, the selection process followed a two-step process. First, an initial pilot test of the sample evidence sources was conducted to ensure clarity and consistency in applying the inclusion and exclusion criteria. Following the pilot test, two independent reviewers (X and Y) screened the title and abstract against the inclusion criteria. The authors selected each article irrespective of age (all ages included), Only articles published across sub-Saharan Africa and in the English language, irrespective of study design (Cross-sectional, cohort, case control). Finally, the full text of the selected articles in the initial phase underwent a detailed assessment against the inclusion criteria by two additional independent reviewers (A and B). In the two-step screening process, any disagreements between the two reviewers were resolved through discussion. "Study quality was rigorously assessed using a modified Newcastle–Ottawa scale (NOS) [27], adapted for the specific study designs included in this review. To ensure objectivity, each article was independently appraised by the authors. Any discrepancies in the initial scoring were resolved through thorough discussion and consensus. In cases where consensus could not be reached, the scores were averaged. The NOS scoring system assigned a maximum of 10 points for cross-sectional studies and 9 points for cohort, case-control, and other designs. Following established criteria [28]. Studies scoring above 6 were classified as being of fair to good quality and were included in the synthesis. While it is important to acknowledge that all studies carry some inherent risk of bias, none of the included primary studies were excluded based on quality concerns, as all studies achieved a score above the pre-defined threshold of 6. Publication bias was formally evaluated using Egger's regression test, supported by visual inspection of funnel plots and further explored through sensitivity analysis.

Outcome measurement

The main aim of this study was to determine the burden of HAIs in ICUs across Sub-Saharan African countries. This was measured by calculating the proportion of patients who developed HAIs after 48 h of admission to the ICU. This proportion was calculated by multiplying the number of patients who developed HAIs after 48 h of admission by 100 and dividing it by the total number of patients admitted to the ICU across all eligible original studies incorporated in this review.

Data extraction and analysis

Data were extracted using the Joanna Briggs Institute data extraction guideline to ensure standard methods [29]. The reviewer team employed a standardized data extraction form to extract the screening articles. The data extraction form was pilot-tested to assess the reliability and consistency of the extraction, as well as the appropriateness and usability of the form. After piloting, the two reviewers extracted data independently to ensure accuracy using the finalized data extraction form, which was cross-checked by more than one author, including, but not limited to, the primary study firs author names, study country, publication years, study designs, sampling methods, sample sizes, prevalence of HAIs in ICUs with 95% confidence intervals (CIs), and microorganism species (S#). A meta-analysis was conducted using Stata version 17 with the random-effects DerSimonian-Laird model for the pooled analysis [30]. Heterogeneity among studies was measured using the I-squared statistic. We considered I-square values below 25% as low heterogeneity, between 25% and 75% as moderate heterogeneity, and above 75% as high heterogeneity. Assessments for publication bias, heterogeneity, and sensitivity analyses were performed. The subgroup analysis was conducted using a random effect DerSimonian-Laird meta-regression model and categorized according to region, publication year, and study design. The analysis of factors affecting the prevalence of HAI in ICU was pooled using a random effect DerSimonian-Laird regression model with 95% CI.

Results

Study selection process

After searching the electronic databases and other records, 2027 observational studies were identified, and 1210 duplicates were removed using EndNote V.20. Subsequently, 720 were excluded based on the title and abstract screening, and 32 were not retrieved. Of the 67 articles deemed eligible, 13 articles did not exactly describe HAI in the ICU (vague report [6–9, 31–39], 6 studies were irrelevant to the selected study setting (out of ICU) [1, 2, 10, 40–42], and 2 had very small sample sizes (<10 study subjects) [43, 44]. Ultimately, 44 articles were incorporated into this systematic review and meta-analysis [14–20, 22–24, 43, 45–76]. The selection was presented using the PRISMA 2020 flow diagram [25] (Fig. 1).

Search results

The authors identified a total of 2,027 original articles from various databases, including PubMed, Scopus, Embase, Web of Science, Google Scholar, Science Direct, HINARI, Africa Index Medicus, and manual searches from repositories such as Bahir Dar University and Addis Ababa University (Fig. 1).

Characteristics of the reviewed study

This systematic review encompasses 44 articles published from 2003 to 2024, with the majority22 articles published recently between 2020 and 2024 [14, 16, 17, 20, 22, 23, 45, 47-51, 53, 59, 62, 63, 65, 67, 69, 72-74]. The remaining 21 articles were published between 2003 and 2019 (Table 1). Among these articles, the majority of 32 studies utilized a cross-sectional design [16-20, 23, 43, 45-47, 49, 51, 53, 55, 56, 60-62, 64-76]; 11 employed cohort designs [14, 15, 22, 24, 48, 50, 52, 57–59, 63], and one paper was a case-control study design [54]. Thirteen Sub-Saharan African countries contributed to this review; however, no studies from other Sub-Saharan countries were included due to various reasons, such as strict criteria or a complete absence of studies in those regions. The number of studies varied across countries: Nigeria contributed the most with 9 studies [15, 45, 55–57, 60, 61, 67, 75]. followed by Ethiopia [14, 22-24, 49-51] and Kenya [17, 62–65, 71, 74] With 7 studies each, while the remaining 11 countries (Rwanda, Cameroon, Tanzania, Uganda, Sudan, Senegal, South Africa, Libya, Morocco, Mozambique, and Malawi) in Sub-Saharan Africa contributed fewer studies to this systematic review and meta-analysis (Table 1).

Subgroup analysis

We planned a priori subgroup analyses to explore heterogeneity in HAI prevalence and identify influencing factors in ICUs based on region (East, South, and West Africa), publication year (before 2020 and after 2020), and study design (cross-sectional, cohort, and case control). For each subgroup, we calculated the HAI prevalence with 95% CI and tested for interactions using the random effect DerSimonian model. We adjusted for multiple comparisons.

Prevalence of hospital-acquired infection in the intensive care unit across Sub-Saharan Africa

The analysis using a random-effects DerSimonian model indicated that the overall prevalence of HAI in the intensive care units was 28.2% (95% CI: 23.6, 32.8). Significant heterogeneity was observed among the studies ($I^2 = 96.9\%$, p < 0.001), indicating considerable variability across the included studies. The prevalence varied by country, with reported rates ranging from 6.8% in Morocco [58]. to 57.4% in Libya [20] (Fig. 2).

Results of the risk bias assessment

Although no studies were excluded based on quality scores, we acknowledge that achieving a "minimal risk of bias" rating does not eliminate the possibility of systematic errors. Potential biases, such as selection bias, may still be present, and we carefully considered their potential impact when interpreting the results of our review.

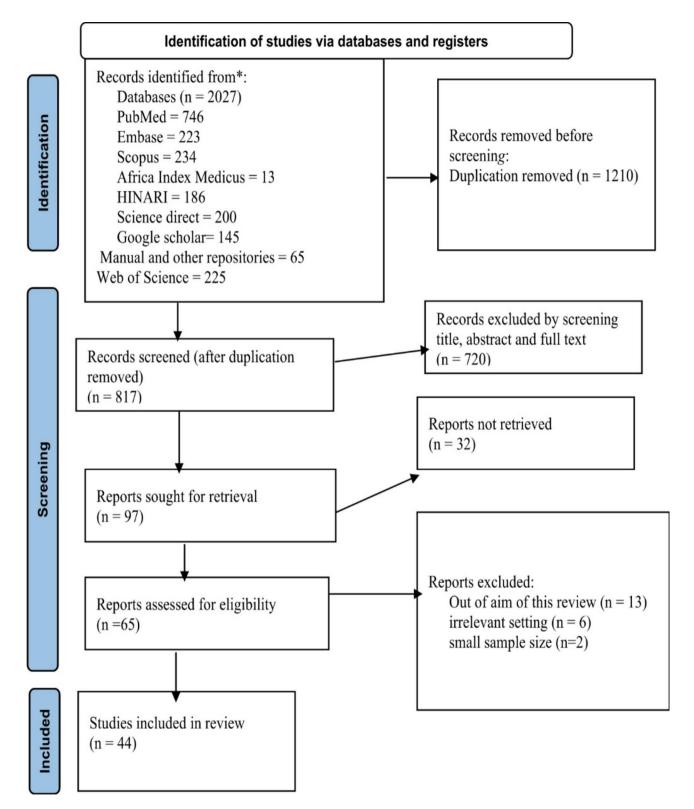


Fig. 1 Flow chart showing the sequence of study selection using the PRISMA 2020 flow diagram for new systematic reviews, which included searches of databases, registers, and other sources

Ю	
C)	
2025	
es	
t	
C	
8	
Ē	
Car	
. <u>U</u>	
÷	
\triangleleft	
g	
g	
Ъ,	
Ň	
sub	
S	
.⊆	
tsi	
Ы	
P	
care	
Ą	
. <u>.</u>	
Ç	
fe	
Ē	
-	
.⊆	
⊲	
Ì	
4	
0	
6	
ę	
ň	
þ	
Pe	
the	
r the	
for the	
for the	
ies for the	
dies for the	
dies for the	
/ studies for the	
ry studies for the	
ary studies for the	
ry studies for the	
rimary studies for the	
ary studies for the	
rimary studies for the	
rimary studies for the	
rimary studies for the	
of the primary studies for the	
ics of the primary studies for the	
ics of the primary studies for the	
istics of the primary studies for the	
istics of the primary studies for the	
cteristics of the primary studies for the	
istics of the primary studies for the	
cteristics of the primary studies for the	
haracteristics of the primary studies for the	
haracteristics of the primary studies for the	
haracteristics of the primary studies for the	
e 1 Characteristics of the primary studies for the	
le 1 Characteristics of the primary studies for the	
able 1 Characteristics of the primary studies for the	
le 1 Characteristics of the primary studies for the	

Only Open Open <th< th=""><th>Author/Vasi) County Daion SS Trong of microscontience confirmed</th><th>Country</th><th>Daion</th><th>v V</th><th>Tynes of mi</th><th>inepropro</th><th>me confirme</th><th>ק</th><th></th><th></th><th></th><th>Dravalance of HAIs in the ICII</th></th<>	Author/Vasi) County Daion SS Trong of microscontience confirmed	Country	Daion	v V	Tynes of mi	inepropro	me confirme	ק				Dravalance of HAIs in the ICII
Mgmin Cd Addition proting prot				3	S. aurous	Pseud	Klebsiella	- Ii	Acineto	Gram	Gram negative	
Nigrid 5 4.4 7.43 Uganda C 11 1,4 23 33 Sudin C 2 1 2 35 33 Ethiopia C 23 11/6 23 33 33 Ethiopia C 23 13 33 31 33 Ethiopia C 23 33 33 33 Ethiopia C 23 33 33 31 Ethiopia C 23 33 33 33 Uganda C 23 33 33 33 Usamid C 23 33 33 33 Uganda C 23 33 33 33 <						monas	specious		bacterial species	positive		
Uganda Cs 11 14 795 30 5 22 Sudan C 32 13 276 13 276 13 226 Ethopia C 20 176 22 176 23 367 Ethopia C 20 23 318 324 333 Ethopia C 23 318 324 333 Ngeria C 24 234 215 691 339 Ethopia C 24 336 211 37 367 Seregal C3 38 11 12 215 14 39 Nortic C 24 23 216 11 37 14 Renda C 24 23 215 11 37 14 Renda C 23 14 15 367 367 Serethorid C 23 15 11 <td>Abubakar U., et al. (2020)</td> <td>Nigeria</td> <td>CS</td> <td>46</td> <td></td> <td>4.48</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>14.3</td>	Abubakar U., et al. (2020)	Nigeria	CS	46		4.48						14.3
Sudan CS 76 1.3 276 1.3 Chirppia C 32 2 78 33 Ethiopia C 32 176 23 367 Ethiopia C 32 12 22 16 633 367 Ethiopia C 23 375 16 335 367 Ethiopia C 23 335 17 33 31 31 Nigeria C 24 23 13 375 14 631 309 Ethiopia C 24 23 11 12 15 31 Ugarda C5 201 11 37 14 86 37 Uparatio C 201 11 37 14 42 57 Uparatio C 201 13 12 31 14 42 57 Uparatio C 201 13 1	Agaba P., et al. (2017)	Uganda	CS	111	14	7.95	30	5	22			30
Ehiopia C 22 77 78 Gameroon C 23 115 226 53 32 Ehiopia C 23 138 235 51 33 35 Ehiopia C 238 23 57 53 35 Ehiopia C 23 35 21 215 35 30 Ehiopia C 23 83 27 21 215 30 Ehiopia C 23 85 23 37 30 30 Ehiopia C 23 85 21 21 21 21 30 Ugada C 23 8 30 11 37 44 36 Ugada C 23 41 15 11 37 14 26 574 Ugada C 23 15 12 214 15 33 67 Ugada </td <td>Ahmed Amani et al. 2021</td> <td>Sudan</td> <td>CS</td> <td>76</td> <td>1.3</td> <td></td> <td>27.6</td> <td>1.3</td> <td></td> <td></td> <td></td> <td>42</td>	Ahmed Amani et al. 2021	Sudan	CS	76	1.3		27.6	1.3				42
Gameron C 83 11.8 2.4 2.26 7.8 3.3 Ethiopia C 32 13.8 37.5 1.4 2.3 83.3 36.7 Ethiopia C 22 23 13.8 37.5 1.4 63.3 36.7 Ethiopia C 27 243 28.5 1.1 21.5 63.3 36.7 Nigetia C 27 243 28.5 1.1 21.5 63.3 36.7 Seregal S 38 21.1 1.1 1.2 23.5 1.4 55.7 Ethiopia C 20 40 8 1.6 1.1 37 1.4 86 Neroid C 23 1.7 1.5 4.0 1.1 37 4.7 Nigetia C 23 1.1 1.5 4.4 4.26 57.4 Nigetia C 23 1.1 1.55 4.0 1.1 <td>Ali Solomon et al. 2018</td> <td>Ethiopia</td> <td>U</td> <td>22</td> <td></td> <td>17.6</td> <td></td> <td>27</td> <td></td> <td></td> <td></td> <td>20.76</td>	Ali Solomon et al. 2018	Ethiopia	U	22		17.6		27				20.76
Ethopia C 220 16 633 367 Ethopia C 13 375 13 375 633 367 Ethopia C 24 214 214 631 309 Fthopia C 27 233 138 375 631 309 Fthopia C 24 214 214 61 309 Ethopia C 24 8 21 215 241 319 Tarranta C 24 8 11 12 37 367 Tarranta C 20 4 11 12 23 574 Wonda C 20 11 12 23 57 55 Wonda C 203 417 154 214 15 Wonda C 203 175 23 57 57 Wonda C 203 175 214 15	Ayangma Cele et al. 2022	Cameroon	U	83	11.8	24	22.6			78	32	19.1
Etholoa C 19 204 224 214 661 309 Rthola C 23 33 375 231 315 313 317 303 311 317 311 317 311 317 311 317	Bizuayehu H., et al. (2022)	Ethiopia	U	220			22	16		63.3	36.7	51.4
Ethioloi C ZB B.3 Z7.1 Z1.5 B.3 D1 Nigeria C Z4 243 27.1 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5 22.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.4 25.5 25.4 25.5 25.5 25.5 25.5 25.7 25.5 25.7 25.5 25.5 25.5 25.5 25.5 25.5 25.7 25.3 26.7 25.3 26.7 25.3 26.7 25.3 26.7 25.3 26.7 25.3 26.7 25.3 26.7 26.3 26.7 26.3 26.7 26.3 26.7 26.3 26.7 26.3 26.7 26.3 26.7 26.7 26.3	Chernet A., et al. (2020)	Ethiopia	U	19	20.4		22.4	21.4		69.1	30.9	14.3
Ngeria C 27 243 27.1 21.5 Ethopia C 247 285 27.1 21.5 25 75 Ethopia C 243 18 11 12 25 75 Tarzania C 20 28 11 23 25 75 Tarzania C 20 4 8 39 9 16 14 86 Tarzania C 20 11 23 8 20 8 33 67 Wonda C5 209 4 8 39 9 16 11 37 14 86 Nigeria C5 202 151 153 40 11 155 11 155 11 155 11 155 11 155 11 155 11 155 154 154 154 154 154 154 154 154 154 154	Dawit T. et al. (2021)	Ethiopia	U	278	8.3	13.8	37.5			8.3	91.7	21.6
Ethiopia C 247 235 Senegal C 24 8 11 12 25 75 Ethiopia C 20 8 11 12 25 75 Ethiopia C 20 404 8 11 12 25 75 Uganda C 200 4 8 39 9 16 14 86 Nanda CS 309 4 8 39 9 16 74 Nigeria CG 206 53 113 125 40 11 7 Nigeria C 71 154 155 40 11 7 Nigeria C 71 154 155 40 11 7 Nigeria C 21 155 514 75 7 7 Nigeria C 70 125 55 40 11 7 5	Dayyab F., et al. (2018)	Nigeria	U	27	24.3		27.1	21.5				18.63
Senegal CS 243 18 11 12 25 75 Ethnopia C 20 8 16 11 37 14 86 Tanzania C 20 3 44 8 33 67 Wanda CS 30 4 8 39 9 16 74 86 Rwanda CS 28 33 67 33 67 53 Rwanda CS 28 73 15 44 155 53 67 Nigeria CS 203 131 125 40 11 57 53 Nigeria C 21 155 40 11 55 53 53 53 Nigeria CS 20 21 134 73 89 207 793 Nigeria CS 20 11 73 89 207 793 Nigeria <t< td=""><td>Debie G., et al. (2024)</td><td>Ethiopia</td><td>U</td><td>247</td><td></td><td>28.5</td><td></td><td></td><td></td><td></td><td></td><td>18.2</td></t<>	Debie G., et al. (2024)	Ethiopia	U	247		28.5						18.2
Ethiopia C 404 8 16 11 37 14 86 Tarzania C 20 4 8 39 9 16 14 86 Tarzania C 20 4 8 39 9 16 33 67 Rwanda CS 309 4 8 3 9 16 33 67 Rwanda CS 39 17 154 214 155 33 67 South Africa CS 197 175 214 155 44 426 574 Nigeria C 21 155 40 111 125 40 111 Nigeria CS 50 202 555 40 111 125 44 426 574 Nigeria CS 203 218 73 89 207 793 Norocco C 22 21 125 <td>Diedhiou M. et al. (2023)</td> <td>Senegal</td> <td>CS</td> <td>243</td> <td>18</td> <td>11</td> <td>12</td> <td></td> <td></td> <td>25</td> <td>75</td> <td>11.5</td>	Diedhiou M. et al. (2023)	Senegal	CS	243	18	11	12			25	75	11.5
Janzania C 20 Uganda CS 11 23 Awanda CS 309 4 8 39 9 16 Renya CS 238 39 4 8 39 67 Renya CS 238 3 15 2 8 33 67 Renya CS 393 175 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 154 155 40 111 155 40 111 155 154 154 154 154 154 154 154 154 154 154 154 154 155 154 154 154 154 154 154 154 154 156 154 156 154 156 154 156 154 156 154 156 154 156	Genaneh W., et al. (2020)	Ethiopia	CS	404	8		16	11	37	14	86	23.3
Uganda C 11 23 Rwanda C 309 4 8 39 9 16 Kenya C 238 5 33 15 33 67 south Africa C 236 53 15 4 4 42.6 57.4 Ujgeria C 203 17 15.4 15.5 4 4 42.6 57.4 Nigeria C 21 15.5 40 11 4 42.6 57.4 Nigeria C 21 185 40 11 4 42.6 57.4 Nigeria C 21 185 40 11 4 42.6 57.4 Nigeria C 21 185 40 11 4 42.6 57.4 Nigeria C 21 125 21 125 55 7 793 Kenya C 23 67 23<	Gosling et al. (2003)	Tanzania	U	20								40
Rwanda C 300 4 8 390 9 16 Kenya C 2266 53 15 8 20 8 33 67 south Africa C 2266 53 15 44 42.6 57.4 Nigeria C 202 15.1 12.5 40 1.1 44 42.6 57.4 Nigeria C 71 15.4 15.5 40 1.1 44 42.6 57.4 Nigeria C 71 15.5 40 1.1 44 42.6 57.4 Nigeria C 21.8 1.1 12.5 40 1.1 44 42.6 57.4 Nigeria C 21.8 21.4 15.5 40 1.1 57.4 Nigeria C 20 21.4 73 89 207 793 Kenya C 5 76 73 89 207 <t< td=""><td>Greco et al., D (2011)</td><td>Uganda</td><td>CS</td><td>11</td><td></td><td>23</td><td></td><td></td><td></td><td></td><td></td><td>45.5</td></t<>	Greco et al., D (2011)	Uganda	CS	11		23						45.5
Kenya CS 238 8 20 8 33 67 Libya CS 197 175 53 15 44 426 574 Libya CS 197 175 51 15 44 456 574 Nigeria CS 202 151 125 40 11 426 574 Nigeria C 71 185 40 11 44 426 574 Nigeria C 71 185 40 11 44 426 574 Nigeria CS 50 133 67 44 155 40 11 Nigeria CS 50 134 73 89 207 793 Nigeria CS 706 78 73 89 207 793 Nozoo CS 706 73 89 207 793 Kenya CS 11 7	Habimana et al., (2024)	Rwanda	CS	309	4	∞	39	6	16			21.68
south Africa CC 2266 53 15 Libya C5 197 175 44 42.6 57.4 Nigeria C5 893 417 15.4 21.4 15.5 41 42.6 57.4 Nigeria C 71 18.5 12.5 40 1.1 42.6 57.4 Nigeria C 71 18.5 11.1 12.5 40 1.1 5 55.5 <td>Githinji et al., 2021</td> <td>Kenya</td> <td>CS</td> <td>238</td> <td></td> <td></td> <td>∞</td> <td>20</td> <td>8</td> <td>33</td> <td>67</td> <td>28.7</td>	Githinji et al., 2021	Kenya	CS	238			∞	20	8	33	67	28.7
Libya CS 197 175 44 42.6 57.4 Nigeria CS 893 417 15.4 21.4 15.5 40 1.1 Nigeria C 71 18.5 12.5 40 1.1 42.6 57.4 Nigeria C 71 18.5 12.5 40 1.1 12.5 40 1.1 Nigeria CS 59 27.8 11.1 22.2 5.5 <	Hlope et al. (2014)	south Africa	U U U	2266		5.3	15					15.8
Nigeria CS 893 417 15.4 21.4 15.5 Nigeria C 71 18.5 12.5 40 1.1 Nigeria C 71 18.5 11.1 12.5 40 1.1 Nigeria C 202 15.1 12.5 40 1.1 Nigeria C5 59 27.8 22.2 5.5 1.1 Nigeria C5 50 776 7.8 1.3 8.9 20.7 79.3 Kenya C5 50 78 1.3 8.9 20.7 79.3 Kenya C5 302 6 2 70 20 79.3 Kenya C5 302 6 2 70 20.7 79.3 Kenya C5 10 8 4 1 1 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4<	Ibrahim et al., 2024	Libya	S	197	17.5		44		44	42.6	57.4	57.4
Nigeria CS 202 15.1 12.5 40 1.1 Nigeria C 71 18.5 11.1 12.5 11.1 Noroco C 22 11.1 22.2 5.5 11.1 Nigeria CS 59 27.8 22.2 5.5 13.4 7.3 Nigeria CS 50 7.8 22.2 5.5 13.4 7.3 8.9 Nozambique CS 52.4 16.8 13.4 7.3 8.9 20.7 79.3 Kenya CS 16.0 13.4 7.3 8.9 20.7 79.3 Kenya CS 16.0 13.4 7.3 8.9 20.7 79.3 Kenya CS 16.0 13.4 7.3 8.9 20.7 79.3 Kenya CS 19.8 7.3 8.9 20.7 79.3 Kenya CS 19.8 7.3 8.9 20.7 79.3 <	lliyasu et al., 2016	Nigeria	S	893	41.7	15.4	21.4	15.5				11.8
Nigeria C 71 18.5 Moroco C 22 11.1 Nigeria CS 59 27.8 22.2 5.5 Nigeria CS 50 7.8 22.2 5.5 Nigeria CS 50 7.8 22.2 5.5 Nozambique CS 7.6 7.8 7.3 8.9 20.7 79.3 Kenya CS 168 13.4 7.3 8.9 20.7 79.3 Kenya CS 168 13.4 7.3 8.9 20.7 79.3 Kenya CS 11 8 4 1 1 Kenya CS 11 8 4 1 Malawi CS 10 8 4 1 Moroco CS 10 18.5 18.5 Moroco CS 10 20 3 18.5 Moroco CS 10 12	lliyasu et al., 2018	Nigeria	S	202	15.1		12.5	40	1.1			11.4
Moroco C 22 11.1 Nigeria CS 59 27.8 22.2 5.5 Nigeria CS 50 22.2 5.5 5.5 Nigeria CS 50 22.2 5.5 5.5 Nozambique CS 50 16.8 13.4 7.3 8.9 20.7 79.3 Kenya CS 160 33 6 2 7.0 20.7 79.3 Kenya CS 160 33 6 2 70 79.3 Kenya CS 11 8 1 7.3 8.9 20.7 79.3 Kenya CS 11 8 2 7 79.3 Malawi CS 51 1 8 4 1 Moroco CS 10 8 4 1 Malawi CS 10 20.7 79.3 Kenya CS 20 20	lwuafor et al., 2016	Nigeria	U	71	18.5							45
Nigeria CS 59 27.8 22.2 5.5 Nigeria CS 50 7.8 2.2 5.5 Nozambique CS 776 7.8 2.3 8.9 2.07 79.3 Mozambique CS 160 7.8 13.4 7.3 8.9 2.07 79.3 Kenya CS 160 2 70 2.07 79.3 Kenya CS 160 2 20 2.07 79.3 Kenya CS 160 2 2.0 2.07 79.3 Kenya CS 11 8 4 1 1 Malawi CS 11 8 4 1 Moroco CS 10 8 4 1 Moroco CS 10 46.5 1 1 Kenya CS 201 7 9 3 Kenya CS 201 1 9	Jroundi et al., 2007	Moroco	υ	22		11.1						6.8
Nigeria CS 50 south Africa CS 776 7.8 Mozambique CS 524 16.8 13.4 7.3 8.9 20.7 79.3 Mozambique CS 524 16.8 13.4 7.3 8.9 20.7 79.3 Kenya CS 88 3 3 5 1 1 5 1 1 5 1 <td< td=""><td>Arinola A. Sanusi et al. 2015</td><td>Nigeria</td><td>S</td><td>59</td><td>27.8</td><td></td><td>22.2</td><td>5.5</td><td></td><td></td><td></td><td>15</td></td<>	Arinola A. Sanusi et al. 2015	Nigeria	S	59	27.8		22.2	5.5				15
south Africa CS 776 7.8 Mozambique CS 524 16.8 13.4 7.3 8.9 20.7 79.3 Kenya CS 160 13.4 7.3 8.9 20.7 79.3 Kenya CS 160 2 2 70 20 79.3 Kenya CS 10 2 2 20 20.7 79.3 Kenya CS 10 2 2 70 20 20.7 79.3 Kenya CS 10 2 2 70 20 20.7 79.3 Malawi CS 51 1 8 4 1 1 Malawi CS 10 12 9 3 1 18.5 Moroco CS 150 46.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Kolawole et al. 2015	Nigeria	S	50								12
Mozambique CS 524 168 13,4 7.3 8.9 20.7 79.3 Kenya CS 160 13,4 7.3 8.9 20.7 79.3 Kenya CS 160 2 2 70 20 79.3 Kenya CS 88 3 2 20.7 79.3 Kenya CS 88 3 2 70 20 Kenya CS 51 1 8 4 1 Malawi CS 108 5 122 9 3 Moroco CS 10 46.5 12 9 3 Kenya CS 120 46.5 12 9 3 Ethiopia CS 201 7.9 3 18.5 18.5 Kenva CS 61 7.9 9 3 18.5 Kenva CS 112 9 3 18.5 17.5<	Lowman et al. 2016	south Africa	S	776		7.8						42
Kenya CS 160 Kenya CS 88 3 Kenya CS 88 3 Kenya CS 302 6 2 70 20 Cameroon CS 51 1 8 4 1 Malawi CS 108 5 12 9 3 Moroco CS 108 5 12 9 3 Kenya CS 130 465 1 79 3 Kenya CS 20 25 12 9 3 Kenya CS 20 25 12 9 3 Ethiopia CS 201 79 3 4 1 Kenva CS 611 79 3 4 1	Mahaluça, et al. 2018	Mozambique	S	524	16.8		13.4	7.3	8.9	20.7	79.3	34.1
Kenya CS 88 3 Kenya CS 302 6 2 70 20 Cameroon CS 51 1 8 4 1 Malawi CS 108 5 12 9 3 Moroco CS 108 5 12 9 3 Kenya CS 150 465 12 9 3 Ethiopia CS 201 25 12 9 3 Ethiopia CS 201 29 3 2 3 Sudan CS 161 7.9 4 1 1	Merali, et al. 2021	Kenya	CS	160								52.5
Kenya CS 302 6 2 70 20 Cameroon CS 51 1 8 4 1 Malawi CS 108 5 8 4 1 Malawi CS 108 5 8 4 1 Moreco CS 108 5 9 3 Kenya CS 150 465 3 Ethiopia CS 201 5 3 Sudan CS 611 7,9 4 1	Ndegwa, et al. 2014	Kenya	S	88		e						21.9
Cameroon CS 51 1 8 4 1 Malawi CS 108 5 18.5 Moroco CS 108 5 18.5 Moroco CS 20 25 12 9 3 Kenya CS 150 46.5 12 9 3 Ethiopia CS 201 5 12 9 3 Ethiopia CS 391 7.9 1 7.9 Kenva CS 611 7.9 41 17	Nji Asakiz, Augustine et al. 2020	Kenya	S	302	9	2	70	20				30.9
Malawi CS 108 5 18.5 Moroco CS 20 25 12 9 3 Moroco CS 150 46.5 12 9 3 ZO20 Ethiopia CS 201 5 5 12 9 3 Z020 Ethiopia CS 391 5 5 5 5 Sudan CS 611 7.9 47 91 17	Nouetchognou et al., 2016	Cameroon	S	51	-		80	4	-			56.86
Moroco CS 20 25 12 9 3 Kenya CS 150 46.5 12 9 3 Colo Ethiopia CS 201 2 201 201 201 Ethiopia CS 391 2 391 2 2 2 Sudan CS 611 7 4 1 1 2	Prin et al., 2020	Malawi	CS	108		5			18.5			18.5
Kenya CS 150 46.5 .2020 Ethiopia CS 201 Ethiopia CS 391 50 Sudan CS 611 7.9 Kenva CS 165 31	Razine et al. 2012	Moroco	CS	20	25		12	6	m			34.5
.2020 Ethiopia CS 201 Ethiopia CS 391 Sudan CS 611 7.9 Kenva CS 165 31 4.7 91 12	Rutare et al., 2013	Kenya	CS	150	46.5							46.5
Ethiopia CS 391 Sudan CS 611 7.9 Kenva CS 165 31 4.2 9.1 1.2	Sahiledengle et al. 2020	Ethiopia	S	201								15.5
Sudan CS 611 7.9 Kenva CS 165 31 4.2 9.1 1.2	Sodo et al., 2024	Ethiopia	S	391								23.3
Kenva CS 165 31 42 91 12	Spagnolello, 2022	Sudan	S	611		7.9						14.2
	Thathi et al. 2023	Kenya	CS	165	3.1		4.2	9.1	1.2			24

Author (Year)	Country	Deian SS	SS	Types of m	croorgani	Types of microorganisms confirmed					Prevalence of HAIs in the ICU
					ĥ						
				S. aurous	Pseud monas	S. aurous Pseud Klebsiella E. coli Acineto monas specious bacteria	oli Acineto bacterial s	Acineto Gram bacterial species positive	Gram oositive	Gram Gram negative positive	
Ugochukwu et al., 2013	Nigeria	S	100		30.1		14				14
Odih et al. 2022	Nigeria	CS	71			25.7					18.5
Osman, 2019	Sudan	S	222								34.5
Mwangi, 2021	Kenya	U	238								28.7
Makanjuola et al. 2018	Nigeria	S	152								30.9
Kamga et al., 2020	Cameroon	U	127		-						44.5
Yadufashije et al. 2019	Rwanda	S	100	37		c S					37

Publication Bias

The funnel plot displayed some asymmetry, which may suggest a potential publication bias (Fig. 3). However, neither Egger's test (P=0.25) nor Begg's test (P=0.67) indicated a significant publication bias in estimating the prevalence of HAI in the intensive care unit (Fig. 3).

To adjust for the potential impact of publication bias, a trim-and-fill analysis was conducted, which showed the imputation of 15 additional studies. This adjustment provided an overall HAI prevalence of 18.037% (95% CI: 17.342–18.733) (Table 2).

Sensitivity analysis

The random-effect Dersimonial model results showed that no single study had a significant influence on the overall pooled prevalence of HAI in intensive care Units (Fig. 4).

Subgroup analysis for the prevalence of HAI in the intensive care unit

The subgroup analysis, which was conducted using a random effect DerSimonian meta-regression model and categorized according to region, publication year, and study design, revealed considerable variability across the different groups. Specifically, the analysis found that Southern Africa had a higher prevalence rate for HAI in ICU patients (30.6% (95% CI: 12.6, 48.2)), whereas West Africa had a lower prevalence rate of 24.3% (95% CI: 19.1, 29.6) (Table 3).

Factors affecting the prevalence of HAI in the intensive care unit, 2025

The authors identified eight studies that had reported significant factors associated with the prevalence of HAI in the intensive care units. Analysis of three studies [15, 45, 74] indicated that neonates had approximately five times more likelihood of developing HAI in the intensive care units compared with adult patients (POR 4.5; 95% CI: 2.90, 6.9). Similarly, 12 studies [14-16, 22-24, 45, 46, 50, 51, 57, 58] showed that mechanically intubated patients had approximately four times higher odds of HAI compared with non-intubated patients (POR 3.5; 95% CI: 2.6, 4.5). Additionally, seven studies [23, 24, 45, 51, 57, 58, 70] demonstrated that patients with trauma and surgical cases are almost four times more prone to HAIs (POR 3.53; 95% CI: 2.85, 4.38) when compared to patients with non-trauma and surgical cases. Another seven studies [14, 17, 23, 24, 45, 57, 63] revealed that patients with comorbidities had 2.3 times higher odds of HAI than those without comorbidities (POR 2.32; 95% CI: 1.71, 3.14). Four studies [15, 24, 46, 70] indicated that patients aged over 50 years were six times more likely to develop HAI in intensive care units compared with childhood-aged patients (POR 6.27; 95% CI: 2.41, 16.30).

Study			Prevalence of HAI in ICU with 95% CI	Weight (%)
Abubakar Usman et al 2020			14.30 [4.18, 24.42]	2.19
Agaba Peter et al 2017			30.00 [21.47, 38.53]	2.30
Ahmed Amani et al 2021			42.00 [30.90, 53.10]	2.11
Ali solomon et al 2018			20.76 [3.81, 37.71]	1.67
Ayangma Cele et al 2022			19.10 [10.64, 27.56]	2.31
Bizuayehu Hiwet et al 2022	-	-	51.40 [44.80, 58.00]	2.43
Chernet Adinew et al 2020	_		14.30 [-1.44, 30.04]	1.76
Dawit tsegaye et al 2021			21.60 [16.76, 26.44]	2.52
Dayyab Farouq et al 2018	_ _		18.63 [3.94, 33.32]	1.84
Debie Getnet et al 2024	-		18.20 [13.39, 23.01]	2.52
Diedhiou Moustapha et al 2023	-		11.50 [7.49, 15.51]	2.56
Genaneh Wondimagegn et al2020	-		23.30 [19.18, 27.42]	2.55
Gosling et al, 2003			40.00 [18.53, 61.47]	1.37
Greco et al, D 2011			45.50 [16.07, 74.93]	0.96
Habimana et al, 2024	-		21.68 [17.09, 26.27]	2.53
Githinji et al, 2021	-		28.70 [22.95, 34.45]	2.48
Hlope et al, 2014			15.80 [14.30, 17.30]	2.63
Ibrahim et al, 2024	-		57.40 [50.49, 64.31]	2.41
lliyasu et al, 2016		_	11.80 [9.68, 13.92]	2.62
lliyasu et al, 2018	-		11.40 [7.02, 15.78]	2.54
Iwuafor et al , 2016	_	—	45.00 [33.43, 56.57]	2.08
Jroundi et al, 2007		•	6.80 [-3.72, 17.32]	2.16
Arinola A. Sanusi et al 2015			15.00 [5.89, 24.11]	2.26
Kolawole,et al 2015			12.00 [2.99, 21.01]	2.27
Lowman, et al 2016			42.00 [38.52, 45.48]	2.58
Mahaluça, et al 2018			34.10 [30.04, 38.16]	2.56
Manaloga, et al 2010 Merali, et al 2021		_	52.50 [44.76, 60.24]	2.36
Ndegwa, et al 2014			21.90 [13.26, 30.54]	2.29
Nji Asakiz, Augustine et al 2020			30.90 [25.69, 36.11]	2.50
		_	56.86 [43.27, 70.45]	1.92
Nouetchognou et al, 2016 Brin, et al, 2020				2.38
Prin at al, 2020			18.50 [11.18, 25.82]	
Razine et al 2012			34.50 [13.67, 55.33]	1.41
Rutare et al, 2013			46.50 [38.52, 54.48]	2.34
Sahiledengle et al 2020			15.50 [10.50, 20.50]	2.51
Sodo et al, 2024			23.30 [19.11, 27.49]	2.55
Spagnolello, 2022	-		14.20 [11.43, 16.97]	2.60
Thathi et al 2023			24.00 [17.48, 30.52]	2.43
Ugochukwu et al, 2013			14.00 [7.20, 20.80]	2.41
Odih et al 2022			18.50 [9.47, 27.53]	2.27
Osman , 2019			34.50 [28.25, 40.75]	2.45
Mwangi, 2021	-		28.70 [22.95, 34.45]	2.48
Makanjuola et al 2018			30.90 [23.55, 38.25]	2.38
Kamga et al, 2020		F	44.50 [35.86, 53.14]	2.29
Yadufashije et al 2019			37.00 [27.54, 46.46]	2.24
Overall	•		27.15 [23.54, 30.76]	
Heterogeneity: τ^2 = 128.76, I ² = 94.89%, H ² = 19.58				
Test of $\theta_i = \theta_j$: Q(43) = 842.01, p = 0.00				
Test of θ = 0: z = 14.72, p = 0.00				
	0 20 40	60 80)	
andom-effects DerSimonian–Laird model				

Fig. 2 Forest plot eliciting the prevalence of HAI in the ICU across Sub-Saharan Africa, 2025

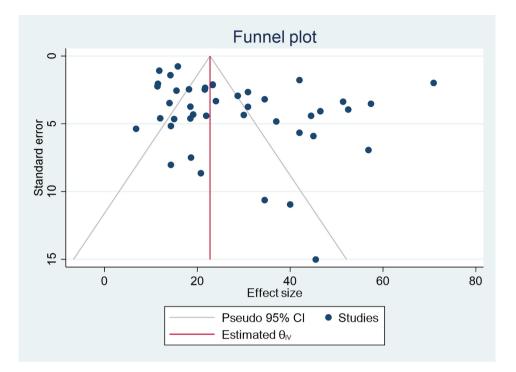


Fig. 3 Funnel plot illustrating asymmetric distribution of 44 studies for pooled prevalence of HAI in the intensive care unit

Table 2 Trim and fill analysis showing the imputation of 15additional studies

Studies	Effect size	95% CI
Observed	22.731	21.984, 23.478
observed + imputed	18.037	17.342, 18.733

Model: Random effects observed = 44

Method: DerSimonian-Laird imputed = 15

Five studies [17, 24, 57, 58, 70] showed that catheterized patients had odds of HAI that were approximately three times higher (POR 3.44; 95% CI: 1.75, 6.75) than non-catheterized patients. Fourteen studies [14–18, 22–24, 49–51, 58, 70, 74], found that patients who stayed longer in the ICU had a relative risk of acquiring an infection that was approximately three times higher (POR 3.62; 95% CI: 2.43, 5.41) compared with early discharged patients. Lastly, three studies [24, 49, 70] indicated that patients with HIV were approximately six times more likely to develop HAI in intensive care units (POR 5.94; 95% CI: 4.10, 8.62) (Table 4).

Discussion

This systematic review and meta-analysis sought to determine the pooled prevalence of HAI in the ICUs and their determinants. The analysis, which employed the randomeffects DerSimonian model, showed that the pooled prevalence of hospital-acquired infections in ICUs was 28.22% (95% CI: 23.61 – 32.81). The prevalence varied between countries in different studies, ranging from very low in Nigeria (11.45%) [55] to significantly high in Libya (57.4%) [20]. This implies that approximately one in three patients acquires an infection in the ICU after 48 h of admission.

This substantial increase of HAIs in SSA healthcare settings evidences an increase in the HAI mortality rate. For example, recent research demonstrated that the mortality rate for patients with HAI was 50%, while that of those without HAI was 13% [34]. This is responsible for the increasing healthcare professional and socio-economic burden in resource-limited nations like SSA countries [24, 48].

Perhaps Sub-Saharan Africa's unstable economy and poor healthcare setup, for example, open suctioning is used rather than closed suctioning due to affordability issues. The reuse of ventilator circuits and prolonged catheterization may contribute to the risk of HAI [20, 49, 68, 72].

The prevalence of HAI in this study was much higher than that reported in high-income countries. A study in Australia found that the prevalence of HAI in ICUs was 6.7% [1], while Olabisi Onabanjo University Teaching Hospital in Sagamu reported 1.8% [37], and studies in the USA reported rates of 1.8% for adult ICUs and up to 5.6% for NICU units across different settings and periods [40]. The differences may be due to poor hospital setups, poor quality medical and nursing care, ineffective utilization of evidence-based practices, and inadequate medical resources and advanced medical technology, for instance. For instance, there is a lack of emergency medicine, antimicrobial-coated catheters, closed suction systems,

Omitted study		Sensetivity analysis with 95% Cl	p-value
Abubakar Usman et al 2020	•	27.44 [23.78, 31.10]	0.000
Agaba Peter et al 2017		27.09 [23.42, 30.75]	0.000
Ahmed Amani et al 2021		26.83 [23.19, 30.46]	0.000
Ali solomon et al 2018		27.26 [23.61, 30.91]	0.000
Ayangma Cele et al 2022		27.34 [23.67, 31.02]	0.000
Bizuayehu Hiwet et al 2022		26.51 [23.00, 30.03]	0.000
Chernet Adinew et al 2020		27.38 [23.73, 31.03]	0.000
Dawit tsegaye et al 2021		27.30 [23.59, 31.01]	0.000
Dayyab Farouq et al 2018		27.31 [23.66, 30.97]	0.000
Debie Getnet et al 2024		27.39 [23.68, 31.10]	0.000
Diedhiou Moustapha et al 2023		27.57 [23.88, 31.25]	0.000
Genaneh Wondimagegn et al2020		27.26 [23.54, 30.99]	0.000
Gosling et al, 2003		26.97 [23.33, 30.61]	0.000
Greco et al, D 2011		26.97 [23.34, 30.60]	0.000
Habimana et al, 2024		27.30 [23.59, 31.02]	0.000
Githinji et al, 2021		27.12 [23.43, 30.80]	0.000
Hlope et al, 2014	•	27.50 [23.58, 31.43]	0.000
Ibrahim et al, 2024		26.36 [22.90, 29.82]	0.000
lliyasu et al, 2016		27.57 [23.87, 31.28]	0.000
lliyasu et al, 2018		27.56 [23.89, 31.24]	0.000
Iwuafor et al , 2016		26.77 [23.14, 30.40]	0.000
Jroundi et al, 2007		27.60 [23.95, 31.25]	0.000
Arinola A. Sanusi et al 2015		27.43 [23.77, 31.10]	0.000
Kolawole,et al 2015		27.50 [23.84, 31.17]	0.000
Lowman, et al 2016		26.70 [23.26, 30.15]	0.000
Mahaluça, et al 2018		26.97 [23.32, 30.61]	0.000
Merali, et al 2021		26.51 [22.97, 30.06]	0.000
Ndegwa, et al 2014		27.28 [23.60, 30.95]	0.000
Nji Asakiz, Augustine et al 2020		27.06 [23.38, 30.73]	0.000
Nouetchognou et al, 2016		26.56 [22.96, 30.16]	0.000
Prin at al, 2020		27.37 [23.69, 31.04]	0.000
Razine et al 2012		27.05 [23.40, 30.69]	0.000
Rutare et al, 2013		26.67 [23.08, 30.27]	0.000
Sahiledengle et al 2020		27.46 [23.76, 31.15]	0.000
Sodo et al, 2024		27.26 [23.54, 30.99]	0.000
Spagnolello, 2022		27.51 [23.76, 31.26]	0.000
Thathi et al 2023		27.23 [23.55, 30.92]	0.000
Ugochukwu et al, 2013		27.48 [23.80, 31.15]	0.000
Odih et al 2022		27.35 [23.68, 31.02]	0.000
Osman , 2019		26.96 [23.31, 30.62]	0.000
Mwangi, 2021		27.12 [23.43, 30.80]	0.000
Makanjuola et al 2018		27.06 [23.39, 30.73]	0.000
Kamga et al, 2020		26.73 [23.12, 30.35]	0.000
Yadufashije et al 2019	•	26.92 [23.28, 30.57]	0.000
20	25 30	35	

Random-effects DerSimonian-Laird model

Fig. 4 Sensitivity analysis for the prevalence of HAI in the intensive care unit 2025

		Effect size 95% conf. interval	I ² % (<i>P</i> -Value)
East Africa	21	29.2 24.2 34.1	91.0 (0.001)
Southern Africa	3	30.578 12.619 48.536	99.1 (0.001)
West Africa	20	24.335 19.102 29.567	93.3 (0.001)
< 2020	22	27.440 21.919 32.962	95.4 (0.001)
>=2020	22	26.951 21.955 31.947	94.2 (0.001)
Cohert	11	28.501 20.169 36.834	91.4 (0.001)
Cross-sectional	32	27.180 22.672 31.689	95.2 (0.001)
case control	1	15.800 14.298 17.302	(0.001)
	Southern Africa West Africa < 2020 >=2020 Cohert Cross-sectional	Southern Africa3West Africa20<2020	Southern Africa330.578 12.619 48.536West Africa2024.335 19.102 29.567<2020

Table 3 Sub-Group analysis for the prevalence of HAI in the ICU

Table 4 Factors affecting the prevalence of HAI in the intensive care unit, 2025

Factor	No studies included	POR (95% CI)	l ² (p-value)	The reference category
Being neonate	3	4.5 (2.9, 6.9)	0.0% (< 0.001)	Adults
Intubation	12	3.5(2.6, 4.5)	14.5%(<0.001)	Not intubated
Trauma and surgery	7	3.5 (2.9, 4.6)	0.0% (< 0.001)	No
Comorbidity	7	2.32(1.7, 3.1)	48.2% (< 0.001)	No
Age > 50	4	6.3 (2.4, 16.3)	81.7% (< 0.001)	Patient age = < 50
Catheterization	5	3.4 (1.8, 6.8)	81.1%(<0.001)	No
Higher length of stay	14	3.6 (2.4, 5.4)	99.9 (< 0.001)	No
HIV positive	3	5.9 (4.1, 8.6)	0.0% (< 0.001)	No

Note: No; reference to absence of the condition (see the notation above the table)., POR=Pooled odds ratio

sterile barrier precautions, and antimicrobial-coated endotracheal tubes [40, 42, 49]. Additionally, hospitals in low-income countries are often overcrowded (lack of well-ventilated space), including ICUs; the proximity of beds may increase the risk of nosocomial transmission between patients within the confined space of ICUs in Sub-Saharan African countries [20, 66, 71].

When compared with other wards such as medical, surgical, pediatric, gynecological, and orthopedic wards, the prevalence of HAIs is higher in the intensive care unit. For example, one study conducted in Ethiopia showed an HAI prevalence of 8.9% in the ward, whereas in the ICU, it was 20.7% [24]. Similarly, another study in Nigeria reported 1.75% in the medical ward and 18.6% in the ICU [15]. In Rwanda, the overall prevalence was 15%, and in the ICU, 50% of patients had HAIs [53]. Perhaps the reason for this is due to the high dependency and critical nature of patients admitted to the ICU, the presence of invasive procedures including intubation and prolonged catheterization (both urinary and central line), as well as prolonged hospital stays contributing to the higher prevalence of HAIs in the ICU [17, 18, 53].

In this study, the authors identified factors affecting the prevalence of HAIs in the ICU; being a neonate poses a higher risk of HAIs compared with adult patients. Neonates may be immunocompromised and easily affected by infections due to their physiological and anatomical immaturity [15, 45]. Similarly, patients who are mechanically intubated have higher odds of HAIs in the ICU compared with non-intubated patients. This might be due to contamination with different microbes during intubation,

especially when healthcare workers engage in unsterile practices; additionally, aspiration may occur during intubation [24, 46]. Furthermore, patients with trauma and surgical cases are at a relatively high risk of infections compared with those with medical cases. The reason may be that non-intact skin or open wounds can intensify microbial colonization and multiplication [23, 45]. Patients with comorbidities have higher odds of HAIs than those without comorbidities. This could be because comorbidities compromise immunity and increase susceptibility to infections [17, 63]. Patients aged over 50 years are more likely to develop HAIs in the ICU than those in childhood. This is due to increased age leading to decreased organ or cellular function, thus predisposing them to infections [15, 70]. Catheterized patients have higher odds of HAIs in the ICU than non-catheterized patients. This may be attributed to catheter-associated infections secondary to contamination [57, 58]. Patients who stay longer in the ICU have greater odds of acquiring infections compared with those discharged early. Prolonged length of stay can increase exposure to various pathogens, thereby increasing the prevalence of infections [16, 18, 51]. Patients with HIV are also more likely to acquire HAIs in the intensive care unit because of the significant immunocompromise associated with HIV infection [24, 49].

Implications of the study

The findings of this study have significant implications for healthcare practices in intensive care units (ICUs) across Sub-Saharan Africa. It highlights the critical need for strict adherence to infection prevention protocols and WHO guidelines, particularly in high-risk groups. Improving the resource allocation to ICU services is essential to enhance patient safety and reinforce healthcare systems. Additionally, addressing the reuse of disposable materials and ensuring accessibility to necessary resources is crucial. Providing both in-service and offservice training for healthcare professionals working in ICUs, along with upgrading ICU facilities such as ventilation systems and isolation units, is vital.

Conclusion

This meta-analysis revealed a substantially high prevalence of hospital-acquired infections (HAIs) in ICUs across Sub-Saharan Africa. Key determinants of HAI prevalence include neonatal age, intubation, age over 50 years, catheterization, prolonged hospital stays, comorbidities, trauma and surgical cases, and HIV-positive status. To mitigate these issues, strategic interventions should focus on enhancing nursing care, ensuring adequate medical supplies, maintaining clean and safe hospital environments, reducing hospital stay durations, promoting evidence-based practices among healthcare professionals, and elevating the overall quality of patient care.

Abbreviations

 HAI
 Hospital-acquired infection

 ICU
 Intensive care Unit

 HAPI
 Hospital-acquired pneumonia

 PRISMA
 Preferred Reporting Items for Systematic Reviews and Meta-Analysis

Supplementary Information

The online version contains supplementary material available at https://doi.or g/10.1186/s12879-025-11038-7.

Supplementary Material 1 Supplementary Material 2

Acknowledgements

The authors thank the researchers who contributed to the data used in this systematic review and meta-analysis.

Author contributions

Credit author statement/List of authors Credit author statement. OA Conceptualization and Manuscript write up YT Formal analysis BA, TA Software and validation GM Validation TA methodology, MM Data curation, AB supervision, Resource, GM Formal analysis, SM methodology.

Funding

No specific funding source for this study.

Data availability

Data AvailabilityAll data generated or analyzed during this study are included in the manuscript or supplementary information.

Declarations

Ethical approval

The ethical declaration is not applicable because this is a systematic review and meta-analysis.

Consent to participate

Not applicable, it is a systematic review and metanalysis.

Consent to publication

Not applicable.

Competing interests The authors declare no competing interests.

the data of acclare no competing inte

Author details

¹Department of emergency and critical Care Nursing, College of Medicine and Health Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia ²Department of Adult Health Nursing, College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia

³Department of Adult Health Nursing, College of Health Science, Assosa University, Assosa, Ethiopia

⁴Faculty of Nursing, University of Alberta, Edmonton Clinic Health Academy, Edmonton, Canada; Department of Adult Health Nursing, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia

⁵Department of Adult Health Nursing, College of Medicine and Health Sciences, DebreTabor University, DebreTabor, Ethiopia

⁶Department of pediatrics and child health nursing, College of Medicine and Health Science, School of Health Science,, Bahir Dar University, Bahir Dar, Ethiopia

⁷Department of Nursing, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia

Received: 15 January 2025 / Accepted: 23 April 2025 Published online: 29 April 2025

References

- Curtis SJ, Barnabas R, Cairns KA et al. Healthcare-associated infections and antimicrobial use at a major referral hospital in Papua new Guinea: a point prevalence survey. Lancet Reg Health–Western Pac. 2024;48.
- BIDERI JP, Rutayisire E, Ntakirutimana T, et al. Prevalence and factors associated with nosocomial infections in public hospitals of Rwanda. A Cross Sectional Study; 2024.
- Markwart R, Saito H, Harder T, et al. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and metaanalysis. Intensive Care Med. 2020;46:1536–51.
- Schreiber PW, Sax H, Wolfensberger A, et al. The preventable proportion of healthcare-associated infections 2005–2016: systematic review and metaanalysis. Infect Control Hosp Epidemiol. 2018;39(11):1277–95.
- Teerawattanapong N, Panich P, Kulpokin D, et al. A systematic review of the burden of multidrug-resistant healthcare-associated infections among intensive care unit patients in Southeast Asia: the rise of multidrug-resistant Acinetobacter baumannii. Infect Control Hosp Epidemiol. 2018;39(5):525–33.
- Ngumi Z. Nosocomial infections at Kenyatta National hospital Intensive-Care unit in Nairobi, Kenya. Dermatology. 2006;212(Suppl 1):4–7.
- Muvunyi V, Mpirimbanyi C, Katabogama JB, et al. Community-and hospital-Acquired infections in surgical patients at a tertiary referral hospital in Rwanda. World J Surg. 2020;44(10):3290–8.
- Nair A, Steinberg W, Habib T, et al. Prevalence of healthcare-associated infection at a tertiary hospital in the Northern cape Province, South Africa. South Afr Family Pract. 2018;60(5):162–7.
- Namukonda S, Shawa M, Siame A et al. Prevalence and Antibiotic Resistance Profile of ESKAPE Pathogens in the Neonatal Intensive Care Unit of the Women and Newborn Hospital in Lusaka, Zambia. 2024.
- Cyuzuzo T, Katabogama JB, Muvunyi V et al. Hospital-acquired infections in patients with surgical infections at a tertiary hospital in Kigali, Rwanda: A prospective observational study. East Cent Afr J Surg. 2023;28(4).

- Frost SA, Alogso M-C, Metcalfe L, et al. Chlorhexidine bathing and health care-associated infections among adult intensive care patients: a systematic review and meta-analysis. Crit Care. 2016;20:1–6.
- Mazzeffi M, Galvagno S, Rock C. Prevention of healthcare-associated infections in intensive care unit patients. Anesthesiology. 2021;135(6):1122–31.
- Mello MJGd A, MdFPMd, Lacerda HR, et al. Risk factors for healthcare-associated infection in pediatric intensive care units: a systematic review. Cadernos De Saude Publica. 2009;25:S373–91.
- Dawit TC, Mengesha RE, Ebrahim MM, et al. Nosocomial sepsis and drug susceptibility pattern among patients admitted to adult intensive care unit of ayder comprehensive specialized hospital, Northern Ethiopia. BMC Infect Dis. 2021;21:1–8.
- Dayyab FM, Iliyasu G, Aminu A, et al. A prospective study of hospital-acquired infections among adults in a tertiary hospital in north-western Nigeria. Trans R Soc Trop Med Hyg. 2018;112(1):36–42.
- Diedhiou M, Sarr N, Dieye A, et al. Nosocomial infections in the intensive care unit of saint Louis regional hospital. Status Report and Prognostic Factors of Mortality; 2023.
- 17. Githinji ME. Risk factors and burden of hospital acquired urinary tract infections among catheterized patients at Kenyatta National hospital's critical care unit. JKUAT-COHES; 2021.
- 18. Greco D, Magombe I. Hospital acquired infections in a large North Ugandan hospital. J Prev Med Hyg. 2011;52(2).
- Mahaluça F, Sacarlal J, Essack S. The etiology of hospital infections in the intensive care unit of a reference hospital in Southern Mozambique. Clin Microbiol. 2018;7(319):2.
- Ibrahim K, Thwood D, ELgheriani H, et al. Prevalence of multi-drug resistant bacteria in intensive care units at Tripoli university hospital, Tripoli, Libya. Libyan J Med. 2024;19(1):2348235.
- 21. Alemu AY, Endalamaw A, Belay DM, et al. Healthcare-associated infection and its determinants in Ethiopia: a systematic review and meta-analysis. PLoS ONE. 2020;15(10):e0241073.
- Bizuayehu H, Bitew A, Abdeta A, et al. Catheter-associated urinary tract infections in adult intensive care units at a selected tertiary hospital, addis Ababa, Ethiopia. PLoS ONE. 2022;17(3):e0265102.
- 23. Sodo E. Healthcare-Associated urinary tract infection and its determinants among adult patients admitted to intensive care units of addis Ababa governmental hospitals, Ethiopia, 2020. Therapy. 2024;2(6):8.
- Ali S, Birhane M, Bekele S, et al. Healthcare associated infection and its risk factors among patients admitted to a tertiary hospital in Ethiopia: longitudinal study. Antimicrob Resist Infect Control. 2018;7:1–9.
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int J Surg. 2021;88:105906.
- Munn Z, Stern C, Aromataris E, et al. What kind of systematic review should I conduct? A proposed typology and guidance for systematic reviewers in the medical and health sciences. BMC Med Res Methodol. 2018;18(1):5.
- Moskalewicz A, Oremus M. No clear choice between Newcastle–Ottawa scale and appraisal tool for Cross-Sectional studies to assess methodological quality in cross-sectional studies of health-related quality of life and breast cancer. J Clin Epidemiol. 2020;120:94–103.
- 28. Fei-ling A, Kui-ru H, Yu-lin S, et al. Quality assessment of cohort studies literature on Chinese smoking by using Newcastle-Ottawa-Scale. 中华疾病控制 杂志. 2021;25(6):722-9.
- Quan C, Clark N, Costigan CL, et al. JBI systematic review protocol of text/ opinions on how to best collect race-based data in healthcare contexts. BMJ Open. 2023;13(5):e069753.
- IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects meta-analysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014;14:1–12.
- Labi A, Obeng-Nkrumah N, Owusu E, et al. Multi-centre point-prevalence survey of hospital-acquired infections in Ghana. J Hosp Infect. 2019;101(1):60–8.
- 32. Newman M. Nosocomial and community acquired infections in Korle Bu teaching hospital, Accra. West Afr J Med. 2009;28(5).
- Nkhoma T, MEASURES OF REDUCING HOSPITAL ACQUIRED INFECTIONS IN A RESOURCE LIMITED COUNTRY: A CASE OF MERCY JAMES CENTRE, PAEDIATRIC INTENSIVE CARE UNIT, MALAWI. P0580/# 510: PRACTICAL. Pediatr Crit Care Med. 2021;22(Supplement 1 3S):287.
- 34. Nuckchady DC. Incidence, risk factors, and mortality from hospital-acquired infections at a hospital in Mauritius. Cureus. 2021;13(11).

- Odoki M, Almustapha Aliero A, Tibyangye J, et al. Prevalence of bacterial urinary tract infections and associated factors among patients attending hospitals in Bushenyi district, Uganda. Int J Microbiol. 2019;2019(1):4246780.
- Okonkwo PI, Okafor KC, Garbal JH, et al. Hospital acquired infections (HAIs) prevention practices among medical students in a teaching hospital in Jos, plateau State, Nigeria. Eur J Med Health Sci. 2024;6(2):14–20.
- Olajubu AF, Osinupebi OA, Ismail L, et al. Pattern of hospital associated infections in a teaching hospital in Nigeria. Asian Pac J Trop Disease. 2012;2:S869–73.
- Olawale KO, Fadiora SO, Taiwo SS. Prevalence of hospital acquired enterococci infections in two primary-care hospitals in Osogbo, Southwestern Nigeria. Afr J Infect Dis. 2011;5(2).
- Sih C, Mbatchou-Ngahane BH, Mboue-Djieka Y, et al. Incidence and impact of hospital-acquired complications in an internal medicine unit of a reference hospital in Cameroon: a prospective cohort study. Trans R Soc Trop Med Hyg. 2021;115(7):772–8.
- Gupta A, editor. Editor Hospital-acquired infections in the neonatal intensive care unit-Klebsiella pneumoniae. Seminars in perinatology. Elsevier; 2002.
- Ige O, Adesanmi A, Asuzu M. Hospital-acquired infections in a Nigerian tertiary health facility: an audit of surveillance reports. Nigerian Med J. 2011;52(4):239–43.
- 42. Kesah N, Vincent KP, Chrysanthus N. Healthcareassociated infections in three hospitals in Dschang, West region, Cameroon. Ann Trop Med Public Health. 2013;6(1):23–9.
- Lowman W. Active surveillance of hospital-acquired infections in South Africa: implementation, impact and challenges. South Afr Med J. 2016;106(5):489–93.
- 44. Mpinda-Joseph P, Anand Paramadhas BD, Reyes G, et al. Healthcare-associated infections including neonatal bloodstream infections in a leading tertiary hospital in Botswana. Hosp Pract. 2019;47(4):203–10.
- Abubakar U. Point-prevalence survey of hospital acquired infections in three acute care hospitals in Northern Nigeria. Antimicrob Resist Infect Control. 2020;9:1–7.
- 46. Agaba P, Tumukunde J, Tindimwebwa J, et al. Nosocomial bacterial infections and their antimicrobial susceptibility patterns among patients in Ugandan intensive care units: a cross sectional study. BMC Res Notes. 2017;10:1–12.
- Ahmed AMA, Elkaki MME, Albadri AKE, et al. Prevalence of hospital acquired pneumonia in intensive care units in Khartoum state (from April 2019 to September 2019). J Clin. 2021;130(3):3. & Biomedical Research SRC/JCBR-133 DOI: doi org/1047363/JCBR/2021
- Ayangma CR, Voundi EV, Mandah DM, ANTIBIOTIC SUSCEPTIBILITY PROFILE OF GERMS RESPONSIBLE FOR NOSOCOMIAL INFECTIONS IN THE SURGICAL AND INTENSIVE CARE UNITS OF THE MILITARY HOSPITAL REGION N 1, CAMER-OON. J Adv Res Med Health Sci ISSN.2208:2425.
- Chernet AZ, Dasta K, Belachew F et al. Burden of healthcare-associated infections and associated risk factors at Adama hospital medical college, Adama, Oromia, Ethiopia. Drug, healthcare and patient safety. 2020:177–85.
- 50. Debie G, Bayu G, Kokeb M. Hospital-Acquired infections in neonatal intensive care unit. Gondar, Ethiopia: A Prospective Follow-Up Study; 2024.
- Genaneh W, Sibhat M, Techane T, et al. Health care-associated infections and associated factors among adult patients admitted to intensive care units of selected public hospitals, addis Ababa, Ethiopia. Int J Afr Nurs Sci. 2023;18:100570.
- Gosling R, Mbatia R, Savage A, et al. Prevalence of hospital-acquired infections in a tertiary referral hospital in Northern Tanzania. Annals Trop Med Parasitol. 2003;97(1):69–73.
- Habimana J, Nizeyimana F, Mvukiyehe JP, et al. Hospital acquired infection in the intensive care unit at Kigali university teaching hospital, a retrospective study. J Crit Care. 2024;81:154571.
- Hlope S, McKerrow N. Hospital-acquired Klebsiella pneumoniae infections in a paediatric intensive care unit. South Afr J Child Health. 2014;8(4):125–8.
- Iliyasu G, Daiyab FM, Tiamiyu AB, et al. Nosocomial infections and resistance pattern of common bacterial isolates in an intensive care unit of a tertiary hospital in Nigeria: A 4-year review. J Crit Care. 2016;34:116–20.
- Iliyasu G, Dayyab FM, Abubakar S et al. Laboratory-confirmed hospitalacquired infections: An analysis of a hospital's surveillance data in Nigeria. Heliyon. 2018;4(8).
- 57. Iwuafor AA, Ogunsola FT, Oladele RO, et al. Incidence, clinical outcome and risk factors of intensive care unit infections in the Lagos university teaching hospital (LUTH), Lagos, Nigeria. PLoS ONE. 2016;11(10):e0165242.
- Jroundi I, Khoudri I, Azzouzi A, et al. Prevalence of hospital-acquired infection in a Moroccan university hospital. Am J Infect Control. 2007;35(6):412–6.

- Kamga HG, Tchuedji YLGN, Mbamyah EL, et al. Nasal carriage of methicillinresistant Staphylococcus aureus in intensive care units of two university hospitals in Cameroon. Microbiol Res J Int. 2020;30(4):26–33.
- Kolawole O, Idakwo A, Ige O, et al. Prevalence of hospital acquired infections in the intensive care unit of university of llorin teaching hospital, Ilorin Nigeria. Sudan J Med Sci. 2015;10(2):59–66.
- Makanjuola O, Fayemiwo S, Okesola A, et al. Pattern of multidrug resistant bacteria associated with intensive care unit infections in Ibadan, Nigeria. Annals Ib Postgrad Med. 2018;16(2):162–9.
- 62. Merali NM. Prevalence and incidence of infections and Sepsis in critical care units at two tertiary referral hospitals in Kenya. Uon; 2021.
- 63. Mwangi EG. Risk factors and burden of hospital acquired urinary tract infections among catheterized patients. at Kenyatta National Hospital's Critical Care Unit; 2021.
- Ndegwa LK, Katz MA, McCormick K, et al. Surveillance for respiratory health care–associated infections among inpatients in 3 Kenyan hospitals, 2010–2012. Am J Infect Control. 2014;42(9):985–90.
- Nji AA, Duna FE. Bacterial multidrug resistant patterns associated with intensive Care Unit Infections in Akum, Cameroon.
- Nouetchognou JS, Ateudjieu J, Jemea B, et al. Surveillance of nosocomial infections in the Yaounde university teaching hospital, Cameroon. BMC Res Notes. 2016;9:1–8.
- 67. Odih EE, Irek EO, Obadare TO, et al. Rectal colonization and nosocomial transmission of carbapenem-resistant Acinetobacter baumannii in an intensive care unit, Southwest Nigeria. Front Med. 2022;9:846051.
- 68. Osman T. Prevalence of intensive care unit-acquired infections in different hospitals in Khartoum state-Sudan. Am J PharmTech Res. 2019;9(5):176–86.
- Prin M, Onofrey L, Purcell L, et al. Prevalence, etiology, and outcome of sepsis among critically ill patients in Malawi. Am J Trop Med Hyg. 2020;103(1):472.

- Razine R, Azzouzi A, Barkat A, et al. Prevalence of hospital-acquired infections in the university medical center of Rabat. Morocco Int Archives Med. 2012;5(1):1–8.
- Rutare S. Prevalence of methicillin resistant staphylococcus aureus (mrsa) among paediatric patients admitted in intensive care unit and neonatal intensive care unit at Kenyatta National. Hospital-Nairobi, Kenya: University of Nairobi; 2013.
- Sahiledengle B, Seyoum F, Abebe D, et al. Incidence and risk factors for hospital-acquired infection among paediatric patients in a teaching hospital: a prospective study in Southeast Ethiopia. BMJ Open. 2020;10(12):e037997.
- 73. Spagnolello O, Fabris S, Portella G, et al. Rates and determinants of hospital-Acquired infection among ICU patients undergoing cardiac surgery in developing countries: results from emergency'ngo's hospital in Sudan. Antibiotics. 2022;11(9):1227.
- 74. Thathi E. Patterns of Healthcare-associated infections in patients at Kenyatta National hospital. Main Intensive Care Unit: University of Nairobi; 2023.
- 75. Ugochukwu NV, Adetona FS, Adeola F, et al. Nosocomial Acinetobacter infections in intensive care unit. Am J Infect Dis. 2013;9(2):40.
- Yadufashije C, Habyarimana T, Karemera J, et al. Bacteriological identification among patients attending intensive care unit at Nemba district hospital. Am J Biomedical Sci Res. 2019;11(2):65–73.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.