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Abstract 

Background  RNA sequencing of whole blood has been increasingly employed to find transcriptomic signatures 
of disease states. These studies traditionally utilize short-read sequencing of cDNA, missing important aspects of RNA 
expression such as differential isoform abundance and poly(A) tail length variation.

Methods  We used Oxford Nanopore Technologies sequencing to sequence native mRNA extracted from whole 
blood from 12 patients with definite bacterial and viral sepsis and compared with results from matching Illumina 
short-read cDNA sequencing data. Additionally, we explored poly(A) tail length variation, novel transcript identifica‑
tion, and differential transcript usage.

Results  The correlation of gene count data between Illumina cDNA- and Nanopore RNA-sequencing strongly 
depended on the choice of analysis pipeline; NanoCount for Nanopore and Kallisto for Illumina data yielded the high‑
est mean Pearson’s correlation of 0.927 at the gene level and 0.736 at the transcript isoform level. We identified 2 
genes with differential polyadenylation, 9 genes with differential expression and 4 genes with differential transcript 
usage between bacterial and viral infection. Gene ontology gene set enrichment analysis of poly(A) tail length 
revealed enrichment of long tails in mRNA of genes involved in signaling and short tails in oxidoreductase molecular 
functions. Additionally, we detected 240 non-artifactual novel transcript isoforms.

Conclusions  Nanopore RNA- and Illumina cDNA-gene counts are strongly correlated, indicating that both platforms 
are suitable for discovery and validation of gene count biomarkers. Nanopore direct RNA-seq provides additional 
advantages by uncovering additional post- and co-transcriptional biomarkers, such as poly(A) tail length variation 
and transcript isoform usage.
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Background
Transcriptomics provides a time- and cost-effective 
method of understanding disease status of the patient 
and enables an avenue to develop targeted prophylactic, 
diagnostic, and therapeutic strategies. Studies investi-
gating host transcriptional response typically employ 
high-throughput short-read sequencing, such as Illu-
mina sequencing, to identify gene-count biomarkers of 
disease [1–5]. These platforms provide highly accurate 
sequence data with high coverage [6]. However, short-
read approaches rely on converting to complementary 
DNA (cDNA) followed by cDNA amplification using 
polymerase chain reaction (PCR), both of which may 
introduce biases that interfere with the accurate quanti-
fication of transcripts [7]. Moreover, short-read sequenc-
ing has transcript/gene length-dependent expression bias 
towards longer transcripts/genes [8], as well as complex 
compositional biases such as with guanine-cytosine (GC) 
content [9]. Additionally, the short read lengths limit the 
resolution of transcript isoforms, leading to challenges in 
accurately quantifying the expression of different tran-
scripts and interrogating alternative splicing patterns and 
differential isoform expression [10].

Biomarker discovery within the transcriptome can be 
extended beyond expression levels to include the detec-
tion of co-/post-transcriptional modifications such as 3’ 
end modification by addition of a polyadenine (poly(A)) 
tail facilitated by poly(A) polymerases [11]. RNA Poly(A) 
tails play a role in post-transcriptional regulation, 
including mRNA stability and translational efficiency 
[12], where the length has been shown to be important 
in translation stimulation via poly(A) binding protein 
(PABP) [13]. Furthermore, highly expressed transcripts 
have been shown to harbor shorter poly(A) tails [14]. 
While poly(A) tail lengths have been investigated via 
head-to-tail ligation PCR [15] or alternative short-read 
sequencing techniques (e.g. PAL-seq [16] and TAIL-seq 
[17]), these homopolymers can extend to several hun-
dred nucleotides (nt), which therefore poses limitations 
with short-read sequencing technologies [17]. By design, 
short-read RNA-seq typically uses anchored oligo-dT 
priming for reverse transcription, which prohibits the 
capture of the full poly(A) tail length, failing to capture 
the full range of poly(A) tail lengths. Therefore, most bio-
marker discovery projects are unable explore co-/post-
transcriptional modifications as potential biomarkers.

To overcome these challenges, an alternative strat-
egy for RNA-sequencing (RNA-seq) has emerged, using 
direct or native RNA-seq) on an array of nanopores by 
Oxford Nanopore Technologies (ONT) [18–20]. This 
advancement facilitates the direct analysis of RNA tran-
scripts, minimizing potential errors and bias associated 
with cDNA synthesis and amplification, detection of 

polyadenylation length as well as the acquisition of long 
read data, which allows the identification of splice vari-
ants [19, 21], thus providing a more comprehensive view 
of the transcriptome. The additional information gained 
from this platform provides alternative methods of dis-
ease biomarker detection.

While the gene expression biases of Illumina cDNA 
sequencing have been widely studied [22], it remains 
unclear which biases are present in quantification of 
Nanopore direct RNA-seq, and whether Nanopore 
direct RNA-seq can be used in place of Illumina short-
read sequencing in transcriptional biomarker discovery 
and validation studies [18–20]. We therefore set out to 
compare blood mRNA data derived from patients with 
definite viral or bacterial sepsis in previously published 
Illumina cDNA [23] with Nanopore direct RNA-seq data 
to understand the gene expression correlation between 
the two platforms. We also set out to investigate which 
additional information for biomarker studies could be 
obtained from Nanopore direct RNA-seq.

Methods
Study design and participants
The samples in this study were selected from RNA col-
lected for a larger study of 907 children evaluated for 
sepsis [23]. The institutional Human Research Eth-
ics Committee approved the study on June 9, 2017 
(HREC/17/QRCH/85). Written informed consent or 
permission to proceed was obtained from the parents or 
caregivers of all participants. Bacterial infections were 
confirmed by cultures of sterile sites by standard pathol-
ogy services which must be compatible with the clinical 
presentation. Confirmed viral infection were based on 
routine diagnostics (influenza A and B, respiratory syn-
cytial Virus (RSV), parainfluenza 1–3, human metap-
neumovirus (hMPV), adenovirus, enterovirus) and 
add-on viral diagnostics of specimens as clinically indi-
cated (such as Enterovirus-PCR in infants with suspected 
sepsis or central nervous system infection). Out of the 
907 children, 235 (~ 25.9%) and 210 (~ 23.2%) had definite 
bacterial or viral infections, respectively. Out of the chil-
dren with definite bacterial or viral infections, 12 samples 
(6 × definite bacterial and 6 × definite viral) were chosen 
for this study based on samples with the most abundant 
RNA remaining after the original study (Table 1) [23].

Sample collection and processing
Blood samples were collected from children patients 
evaluated for sepsis. 2.5  mL of blood was collected in 
PAXgene Blood RNA tubes (PreAnalytix) and total RNA 
was extracted using the PAXgene Blood miRNA Kit 
(PreAnalytix).
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Table 1  Clinical, microbiological, and severity characteristics of cohort

Characteristic Category Cohort
N = 12

Gender n (%) Female 6 (50)

Age n (%)  < 1 year 10 (83)

1–5 years 1 (8)

5–10 years 0 (-)

10–18 years 1 (8)

Age (years) median (IQR) 0.6 (0.4, 0.8)

Chronic condition n (%) No 9 (75)

Yes 3 (25)

Symptoms at presentation n (%) Fever 8 (67)

Rash 2 (17)

Altered level of consciousness 2 (17)

Irritability 3 (25)

Seizures 1 (8)

Pain 1 (8)

Nausea/Vomiting 4 (33)

Diarrhoea 2 (17)

Respiratory distress/apnoea 4 (33)

Cough 6 (50)

Pale/cyanotic episode 2 (17)

Cold extremities 1 (8)

Skin / wound infection 0 (-)

Other 1 (8)

Primary clinical focus n (%) Sepsis without a source 3 (25)

Lower respiratory infection 2 (17)

Upper respiratory infection 3 (25)

ENT infection/abscess 1 (8)

Other 3 (25)

Time from hospital admission to sampling (hours) median (IQR) 4.1 (2.9, 16.7)

Admission to PICU n (%) Yes 7 (58)

Laboratory characteristics at baseline median (IQR) Lactate [mmol/l] 1.5 (1.3, 1.8)
(N = 9)

Creatinine [µmol/l] 29 (29, 30)
(N = 11)

Bilirubin [µmol/l] 10 (6, 22)
(N = 11)

Platelets [*103/µL] 310 (183, 406)
(N = 11)

White Cell Count [*103/µL] 19 (11.6, 20.1)
(N = 11)

C-reactive protein [mg/L] 37.5 (29, 120)
(N = 10)

Infection Type n (%) Definite Bacterial 6 (50)

Definite Viral 6 (50)

At least one organ dysfunction n (%) Baseline 6 (50)

24 h 3 (25)

Organ dysfunction remote from the primary site of infection n (%) Baseline 6 (50)

24 h 3 (25)

Any organ support n (%) Baseline 5 (42)

24 h 3 (25)

Any Inotropes n (%) Baseline 2 (17)
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RNA QC and quantification
RNA samples were quantified using the Qubit™ RNA 
Broad Range Assay Kit (Invitrogen) and QC was per-
formed using the Agilent RNA assay (#5067–5576) on 
the TapeStation 4200 (Agilent # G2991AA) as per the 
manufacturer’s protocol.

GLOBINclear™‑Globin mRNA depletion
1–4  μg of total RNA in a maximum volume of 14 
μL was used to remove globin mRNA using the 
GLOBINclear™-Human Kit, for globin mRNA deple-
tion (Invitrogen #AM1980), as per the manufacturer’s 
protocol. On completion of the mRNA depletion pro-
tocol, each RNA was quantified, and QC was per-
formed using the Qubit™ RNA Broad Range Assay Kit 
(Invitrogen) and the Agilent RNA assay (#5067–5576) 
on the TapeStation 4200 (Agilent #G2991AA) as per 
the manufacturer’s protocol.

ONT library preparation and sequencing
Libraries were prepared following the Direct RNA 
Sequencing protocol (ONT, #SQK-RNA002) as per the 
manufacturer’s instructions including the RCS, with only 
modifications to the amount of input RNA (500 – 700 ng 
of globin-depleted total RNA), to take into account 
the variability in mRNA content (~1–5%) within total 
RNA and maximize our output. For samples with RNA 
concentration lower than 50  ng/μL, a maximum input 
volume of 9 μL was used to prepare the libraries. On 
completion of the library prep, the reversed-transcribed 
and adapted RNA was sequenced on a MinION Mk1B 
(Oxford Nanopore) using a R9.4.1 flow cell using Min-
KNOW v22.12.7 with the default settings when the flow 
cells were used once, and v20.06.18 with the default set-
tings for a total of 24 h if the flow cell was washed and re-
used. On completion of the first round of sequencing, a 
flow cell wash was performed using a Flow Cell Wash Kit 
(ONT, #EXP-WSH004) as per the manufacturer’s proto-
col. Once the flow cell was washed and pore QC checked, 
a second library was loaded and sequenced according to 
the same settings that was mentioned previously.

Illumina cDNA‑Sequencing
Data from Illumina cDNA-sequencing (cDNA-seq)  was 
derived from our previous work [23]. Briefly, libraries 
were prepared from total RNA using the TruSeq Stranded 
Total RNA (Ribo‐Zero GOLD) Library Preparation kit 
(Illumina). Strand-specific libraries were sequenced using 
the Illumina NextSeq 75 cycle (1 × 75  bp) High Output 
Run.

Basecalling and alignment
For the 12 Nanopore sequencing datasets, Dorado 
v5.3 was used for basecalling while the model was set 
as rna002_70bps_hac@v3 and the “–estimate-poly-a” 
parameter was applied. Fast5 files were converted to 
Pod5 format before inputting to Dorado software using 
“pod5 convert fast5” as per recommended in the Dorado 
user manual. Only passed reads were kept for analysis. 
The output format for Dorado was set to bam files to 
keep more information including poly(A) tail length. By 
using “samtools bam2fq”, bam output files were converted 
to fastq format for mapping purposes. For 12 Illumina 
sequence datasets, fastq files were demultiplexed on the 
sequencing machine. Gencode GRCh38 v35 genome and 
transcriptome human references were used as the refer-
ences. Minimap2 v2.24 was used for mapping, with the 
command “minimap2 -t 20 -ax splice -uf -k14 -L ref.fa 
sample.fastq” for ONT reads and default Minimap2 short 
read parameters for Illumina datasets. Samtools v1.16.1 
was used to sort and index the bam file created from 
mapping process. Mapping statistics results were calcu-
lated using the Samtools “flagstats” function.

Pearson correlation analysis of nanopore and illumina 
sequencing data
To evaluate the correlation between Nanopore direct 
RNA-seq data and Illumina cDNA sequencing data, we 
conducted Pearson correlation analysis using R. Nano-
pore direct RNA-seq data underwent processing with 
various software packages, including NanoCount [24], 
IsoQuant [25], HTSeq [26], and Bambu [27] for Nanop-
ore RNA-seq, a while Illumina cDNA-seq data were pro-
cessed with Kallisto [28] and HTSeq [26]. We calculated 

Table 1  (continued)

Characteristic Category Cohort
N = 12

24 h 2 (17)

Multi-organ dysfunction n (%) Baseline 5 (42)

24 h 3 (25)
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the fishers-z transformation on the Nanocount-Kallisto 
Pearson correlation coefficient and Isoquant-Kallisto 
Pearson correlation coefficient. By conducting a z-test 
between corresponding samples’ transformed values, 
we calculated the p-value to decide the significance of 
difference.

Python3 and R scripts were developed to standardize 
transcript IDs and gene names across different software. 
Detailed instructions for using each software and their 
respective scripts can be found in their software docu-
mentation. Transcript isoforms were grouped into genes 
using established gene annotation databases—Ensembl 
and GENCODE [29, 30].

For each combination of sequencing platform (Nanop-
ore or Illumina) and processing software, raw count data 
or transcript-level abundance estimates were obtained. 
Pearson correlation coefficients were then computed 
between corresponding gene-to-gene expression values 
across samples for the mapped data. Transcript-level 
analyses were carried out without mapping to genes, but 
via calculating Pearson correlations directly. All correla-
tion analyses were conducted in R v4.3.1, utilizing built-in 
functions for calculating Pearson correlation coefficients.

Poly(A) tail length analysis
When using the Dorado basecaller [31] with the parame-
ter “–estimate-poly-a”, the output bam file will contain an 
extra tag to record the poly(A) tail length in each read. A 
summary on read length and poly(A) tail length was cre-
ated with the command “samtools view basecalling.bam | 
awk ‘/pt:i/{print $1,length($10),$NF}’ | sed ‘s/pt:i://g’”.

Gene Set Enrichment Analysis (GSEA)
Gene Set Enrichment Analysis (GSEA) was conducted 
to identify significantly enriched pathways and biological 
processes associated with the experimental conditions. 
We utilized pre-ranked GSEA with the GSEA R pack-
ages, focusing on coding genes, excluding mitochondrial 
transcripts. Typically, GSEA is employed to analyze genes 
based on their differential expression ranks or other rel-
evant scores. In our study, genes were ranked according 
to their poly(A) tail lengths, from longest to shortest.

For the analysis, we utilized the clusterProfiler pack-
age from Bioconductor. Specifically, the “ridgeplot” 
function within clusterProfiler was used to perform the 
GSEA targeting the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways and Gene Ontology (GO) 
terms databases. For KEGG pathway enrichment analy-
sis, the “enrichKEGG” function was utilized to identify 
significantly enriched pathways. Similarly, for GO term 
enrichment analysis, the “enrichGO” function was used 

to determine significantly enriched molecular functions 
(MF) and cellular components (CC). Enrichment scores 
and significance levels were computed using permutation 
testing, with a False Discovery Rate (FDR) threshold set 
at 0.05 to determine statistically significant enrichment. 
All analyses were conducted in R v4.3.1 with clusterPro-
filer v4.12.0 [32], ensuring reproducibility and robustness 
of the results.

Differential expression analysis
DESeq2 v1.42.0 was used to identify differentially 
expressed genes from direct RNA-seq data. A mini-
mum expression threshold of 10 reads per gene across 
all samples was applied. Comparisons between viral 
and bacterial infection samples were conducted 
using the standard pipeline. Genes with an adjusted 
P-value < 0.05 and |log2FC|  ≥ 1 were considered sig-
nificantly differentially expressed. Volcano plots were 
generated using the EnhancedVolcano v1.20.0 package 
in R.

Differential polyadenylation analysis
The differential polyadenylation analysis aimed to iden-
tify variations in poly(A) tail lengths across different 
experimental conditions, specifically comparing viral 
and bacterial infection samples. This analysis sought 
to elucidate how changes in polyadenylation patterns 
might correlate with gene expression and functional 
outcomes.

Poly(A) tail length measurements were obtained from 
Nanopore RNA-seq data, providing high-resolution 
insights into polyadenylation dynamics. The raw poly(A) 
lengths were log-transformed due to their right-skewed 
distribution. Subsequently, the package lmerTest v3.1.3 
[33] was employed to perform a linear mixed-effects 
regression (lmer), where the log-transformed poly(A) 
length for all reads mapped to one gene served as the 
response variable, the infection type (viral or bacterial) 
as the fixed effect, and the sample batch as the random 
effect. Per-gene P-values were generated and adjusted 
using the Benjamini-Hochberg (BH) method with the 
‘p.adjust’ function in R. Genes exhibiting differential pol-
yadenylation were identified using cutoffs of an adjusted 
P-value < 0.05 and |log2FC| ≥ 0.5.

Raincloud plots were generated for raw poly(A) tail 
lengths of all reads that mapped to each differentially 
polyadenylated gene (DPG) under both conditions (viral 
and bacterial infections) using ggplot2 v3.5.1, replicating 
the raincloud plots generated by the raincloudplots v0.2.0 
package in R [34]. To perform the sensitivity analysis, the 
bootstrapping method was applied. For each DPG, reads 
assigned to the gene were resampled with replacement 
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and lmerTest was applied 100 times. A comparison 
between the adjusted P-value from 100 experiments and 
the set threshold (adjusted P-value < 0.05) was performed 
to test the hypothesis of significant robust difference for 
poly(A) length on DPGs between viral and bacterial sam-
ples. Principal component analysis (PCA) was conducted 
using both gene-level abundance from NanoCount and 
average poly(A) length of genes across all ONT samples 
estimated by Dorado using ‘procomp’ and ‘ggplot’ via R.

Novel isoform identification
Due to low sequence coverage per sample, we aggregated 
the direct Nanopore RNA-seq data from all samples to 
detect novel isoforms with IsoQuant v3.3.1 using fastq 
files as inputs. IsoQuant utilizes the input annotation 
file (hg38 GFF3), and matches reads against known tran-
scripts. Next, it performs splice site correction, intron 
graph construction and transcript discovery. The counts 
file derived from this step were used for downstream 
analyses (e.g. differential expression analysis).

To identify any artifacts in our list of detected novel 
isoforms, we applied SQANTI3 v5.1.2 [35] to the Iso-
Quant output GTF file containing the entire reference 
annotation plus all discovered novel transcripts to check 
the quality of the detected transcripts and filter for true 
isoforms. Quality control was carried out using the ‘qc’ 
function and cross-validated by publicly available data-
sets such as human refTSS (v3.1.hg38), and poly(A) 
motifs. SQANTI3 uses a random forest classifier to filter 
out artifacts by learning high and low-quality attributes 
from a True Positive (TP) and True Negative (TN) tran-
script set, building a model to distinguish artifacts and 
isoforms based on TN and TP properties. A random for-
est probability filter of greater than or equal to 0.7 was 
utilized for this step.

Furthermore, we extended the annotation with new 
novel isoforms discovered from IsoQuant and SQANTI3 
and ran the Featurecounts tool to confirm the existence 
of the novel isoforms.

Differential transcript usage analysis
We integrated the identified novel transcripts into 
the input annotation file and subsequently re-ran Iso-
Quant. Counts (TPM) derived from IsoQuant utilizing 

transcriptome-mapped BAM files were used to quantify 
the differential transcript usage between bacterial and 
viral samples. For differential transcript usage analysis, 
the quantified counts were input into DRIMSeq v1.14.0 
[36], a tool designed to detect differences in transcript 
isoform usage. Prior to analysis, the counts underwent 
filtering based on specific conditions to ensure robust-
ness and reliability. Specifically, parameters includ-
ing min_samps_gene_expr, min_samps_feature_expr, 
min_gene_expr, and min_feature_expr were set to 12, 4, 
10, and 10, respectively. As there are issues with utiliz-
ing solely the outputs of DRIMSeq due to the lack of an 
appropriate FDR control, we applied the recommended 
stage-wise testing to alleviate this issue via StageR v1.26.0 
[37]. In this approach, the first stage involves filtering 
genes based on BH-adjusted p-values at the gene level. 
Genes that pass this stage proceed to the second stage, 
where transcript-level P -values are adjusted for each 
gene to control both Family-Wise Error Rate (FWER) 
and BH-adjusted p-values. The threshold utilized was 
padj < 0.05.

Results
Comparison of gene and transcript expression 
quantification between direct RNA‑sequencing 
and short‑read Illumina cDNA‑sequencing
To make comparisons between Illumina and Nanop-
ore direct RNA-seq data, we sequenced RNA samples 
derived from whole blood of 12 patients with sepsis 
with Nanopore direct RNA-seq and compared the data 
to Illumina sequencing data (described in our previous 
work [23]). Nanopore sequencing yielded an average of 
1,279,075 reads per sample (Supplementary Table 1). The 
aligned read lengths had a median of 971 nucleotides 
(Supplementary Table 1).

We evaluated the Pearson correlation in read counts 
per coding gene across different sequencing meth-
ods and all 12 samples. Figure  1A illustrates the cor-
relations between Nanopore RNA-seq and Illumina 
cDNA-seq for all samples using widely-used RNA-seq 
quantification tools, including NanoCount [24], Iso-
Quant [25], HTSeq [26], and Bambu [27] for Nanopore 
RNA-seq, and Kallisto [28] and HTSeq [26] for Illu-
mina RNA-seq. For the majority of individual samples, 

Fig. 1  Gene-to-gene comparison with direct RNA-seq and Illumina cDNA-seq using different pipelines. A Pearson correlations between Nanopore 
RNA-seq and Illumina RNA-seq for all samples using different quantification tools, including NanoCount, IsoQuant, HTSeq, Bambu, and Kallisto. The 
order of the keys on the X-axis is ONT_Illumina, for example, HTSeq_Kallisto represents HTSeq for ONT correlated with Kallisto for Illunima. B JSD 
(Jensen–Shannon Divergence) between Nanopore RNA-seq and Illumina cDNA-seq for all samples using different RNA-seq quantification tools, 
including NanoCount, IsoQuant, HTSeq, Bambu, and Kallisto. C The heatmap of Pearson correlations on coding genes across all 12 samples using 
NanoCount for Nanopore and Kallisto for Illumina RNA-seq

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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high correlations were observed between Nanopore 
and Illumina RNA-seq, with the highest correlations 
found between NanoCount and Kallisto (r = 0.734–
0.981, mean = 0.927), followed by IsoQuant and Kallisto 
(r = 0.695–0.983, = mean 0.910), HTSeq and Kallisto 
(r = 0.644–0.980, mean = 0.885), Bambu and Kallisto 
(r = 0.360–0.926, mean = 0.760), and HTSeq and HTSeq 
(r = 0.312–0.617, mean = 0.500) (Fig.  1A). Overall, we 
observed better consistency between Kallisto and other 
Nanopore RNA-seq tools compared to using HTSeq for 
both Nanopore and Illumina RNA-seq (Supplementary 
Fig. 1), which suggested that Kallisto performed better 
than HTSeq for short-read sequencing performed on 
the Illumina platform. The correlations for each sam-
ple between Isoquant-Kallisto and Nanocount-Kallisto 
were found to be significantly different in 8 out of 12 
samples (P-value < 0.01, Supplementary Table 2). Addi-
tionally, we used Jensen–Shannon Divergence (JSD) 
to measure the similarity between the distributions 
of Nanopore RNA-seq and Illumina RNA-seq data 
for all samples using various RNA-seq quantification 
tools, where two identical distributions have JSD = 0 
(the smaller, the better). NanoCount and Kallisto out-
performed the alternatives, not only in terms of mean 
JSD values (mean 0.168) but also in their variances 
(Fig.  1B). We further evaluated gene-to-gene correla-
tions between Nanopore RNA-seq and Illumina RNA-
seq and observed that the number of highly correlated 
genes increased as we excluded genes with low expres-
sion levels (Supplementary Fig.  2A). A similar trend 
was noted for transcript-to-transcript correlations 
(Supplementary Fig.  2B). Correlations between Nano-
pore RNA-seq (Nanocount) and Illumina RNA-seq 
(Kallisto) were lower (r = 0.435–0.885, mean = 0.736) 
compared to those observed at the gene level (Supple-
mentary Fig. 3).

Interestingly, we noted that when analyzing Illumina 
data with Kallisto [28], the pipeline mitigated biases 
introduced by gene lengths by utilizing the Transcripts 
Per Million (TPM) metric, with normalization account-
ing for gene length (p > 0.37) (Supplementary Fig. 4A). 
However, we observed a length bias towards shorter 
genes in Nanopore data with NanoCount, when using 
the TPM metric, without normalization accounting 
for gene length (p < 0.00001) (Supplementary Fig.  4B). 

Furthermore, GC content impacted both Kallisto and 
NanoCount (p < 0.005) (Supplementary Figs. 4C-D).

Collectively, our results highlight that gene expres-
sion estimates from Illumina and Nanopore platforms 
are highly correlated with certain combinations of pipe-
lines, especially when using NanoCount for Nanopore 
direct RNA-seq and Kallisto for Illumina sequencing. 
Furthermore, length-dependent biases are more preva-
lent in Nanopore sequencing and GC content biases are 
present in both sequencing platforms.

Poly(A) tail lengths of mitochondrial vs non‑mitochondrial 
transcripts in human blood mRNA
From the results above, it was apparent that since we 
obtained similar quantification outputs to Illumina 
cDNA-seq with Nanopore RNA-seq, the two platforms 
may be considered equivalent terms of expression esti-
mations, noting that Illumina cDNA-seq still remains 
more cost-effective. However, as mentioned previously, 
Nanopore direct RNA-seq provides additional advan-
tages with its long-read capability, such as poly(A) tail 
length detection, although it remains unclear whether 
these features are important for biomarker discovery.

We therefore estimated the length of poly(A) tails at 
the 3’ end of transcripts using the built-in function of the 
ONT Dorado basecaller [31]. For mitochondrial tran-
scripts, the overall distribution of poly(A) lengths was 
centred at ~ 45 nt, and few poly(A) tails exceeded 70 nt in 
length (Fig. 2A). These findings are consistent with previ-
ous studies on mitochondrial poly(A) RNA in human cell 
lines [38, 39]. In contrast, nuclear transcripts exhibited a 
wider length distribution across the 12 samples, with a 
peak around ~ 80 nt, and an average of 0.21% of poly(A) 
tails of transcripts across the samples were longer than 
350 nt (Fig. 2B). This highlighted the capability of long-
read sequencing for transcriptome-wide poly(A) length 
estimations.

GSEA of genes ranked by poly(A) tail lengths highlights 
molecular pathways enriched in genes with short and long 
poly(A) tails
Whether poly(A) tail lengths are randomly distributed 
or specific to functional units of cellular pathways is yet 
to be fully understood. Gene Set Enrichment Analysis 
(GSEA) identifies pathways where genes are enriched at 

(See figure on next page.)
Fig. 2  Poly(A) length distribution and Gene Set Enrichment Analysis (GSEA) using genes ranked by poly(A) tail lengths. A Poly(A) length distribution 
in mitochondrial transcripts. B Poly(A) length distribution in nuclear transcripts. C-E Ridgeplots from the clusterProfiler package with the X-axis 
indicating the poly(A) lengths and Y-axis indicating the GO term or KEGG pathway. The distribution is the distribution of poly(A) length of those 
genes that enriched in the corresponding GO enrichment analysis C molecular function D cellular component and E KEGG pathway, and the colour 
indicates the significance, with adjusted P-value < 0.05 deemed as significant (the full list of significant pathways can be viewed in Supplementary 
Tables 2–4). The mitochondrial transcripts are excluded and numbers on the plots indicate the number of genes relevant to the GO term/pathway
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Fig. 2  (See legend on previous page.)
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the extremes of the ranked gene list, more than would be 
expected by chance alone. Traditionally, GSEA has found 
widespread application in the analysis of genes based on 
their differential expression rank or other scores [40–42]. 
Here, we employed pre-ranked GSEA using the GSEA 
R packages on 1,520 coding genes, excluding mitochon-
drial transcripts [32, 43]. In our study, genes were ranked 
according to their median poly(A) tail lengths, from 
longest to shortest. The median poly(A) tail lengths for 
the coding genes ranged from 26 to 147 nt, with a mean 
of 83 nt. We conducted GSEA to explore the GO terms 
(Fig. 2C-D Supplementary Tables 3–4) and KEGG path-
way databases (Fig.  2E & Supplementary Table  5) and 
identified pathways significantly associated with longer 
or shorter poly(A) tails.

The GO term analysis revealed that genes with shorter 
poly(A) tails exhibited significant enrichment in func-
tions related to energy production and protein synthesis 
such as NADH dehydrogenase activity, electron trans-
fer activity, oxidoreduction-driven active transmem-
brane transporter activity and rRNA binding (Fig.  2C). 
The presence of shorter poly(A) tails in these pathways 
suggested that stability of mRNA derived from genes 
in these pathways may be reduced compared to genes 
belonging to other cellular pathways [14]. In contrast, the 
recent evidence regarding abundant and efficiently trans-
lated mRNAs across eukaryotes having shorter poly(A) 
tail lengths may suggest that the genes involved in these 
pathways may have higher abundance and/or efficient 
translation [14].

Genes with longer poly(A) tails were significantly 
enriched in functional categories pivotal for more spe-
cialized and regulated cellular processes. These functions 
are predominantly related to signal transduction, includ-
ing signaling receptor activity, molecular transducer 
activity as well as ion binding (Fig.  2C). Other enriched 
functions include DNA-binding transcription factor activ-
ity involved in transcriptional regulation and immune 
receptor activity related to an immune response. The 
longer poly(A) tails in these genes may enhance mRNA 
stability and translation efficiency, ensuring robust and 
sustained production of proteins involved in these com-
plex and highly regulated pathways [44]. These results 
were reciprocated in cellular component GO enrich-
ment analysis (Fig. 2D). In addition, we observed that the 
poly(A) distributions for each molecular functional path-
way revealed a high degree of consistency across differ-
ent samples. This consistency underscores the robustness 
of the poly(A) distribution patterns within each pathway, 
indicating that these distributions are maintained irre-
spective of sample variability (Supplementary Fig. 5).

KEGG pathways belonging to infection, disease-
related, ribosome and oxidative phosphorylation path-
ways comprised transcripts with shorter poly(A) lengths 
and immunity-related pathways showed longer poly(A) 
lengths overall (Fig.  2E). This result suggests the poten-
tial stronger stability of immunity-related transcripts 
and high turnover of ribosomal and disease-related tran-
scripts in patients experiencing an acute bacterial or viral 
infection Furthermore, we observed a bimodal distri-
bution within one of the significant pathways—insulin 
resistance (Fig.  2E). Upon investigating further, the first 
peak was enriched with a set of genes, including SOCS3, 
TNFRSF1A, RPS6KA1, CD36, STAT3, PTEN, MLX, and 
PRKCB. In contrast, the second peak notably included 
PYGL and PPP1CB, both exhibiting relatively longer 
poly(A) tails. PYGL and PPP1CB encode proteins that 
function as phosphatases, playing critical roles in meta-
bolic regulation [45–48]. Most genes in the first peak are 
actively involved in inflammatory processes and immune 
response, including CD36 [49], SOCS3 [50], TNFRSF1A 
[51], STAT3 [52], PTEN [53], and PRKCB [54]. These 
results highlight the importance of visualizing poly(A) 
tail lengths in RNA-seq data, as they may underlie diverse 
regulatory mechanisms and functional outcomes.

Direct RNA sequencing uncovers hundreds of novel mRNA 
isoforms expressed in whole blood of patients with sepsis
Another advantageous feature of Nanopore sequenc-
ing is the ability to accurately determine novel transcript 
isoforms [55]. Therefore, we explored novel isoform 
detection in our datasets. IsoQuant [25] has proven to 
be an effective tool for transcript discovery and quan-
tification using long RNA reads, which showed cor-
relation with Illumina cDNA sequencing comparable 
to NanoCount (Fig.  1). We detected a total of 159,824 
transcripts, of which 958 were considered novel iso-
forms by IsoQuant, with 240 non-artifact novel isoforms 
detected by SQANTI3 after machine learning filtering 
(Supplementary Table  5). The majority of identified 958 
novel isoforms fell into the categories “Novel In Catalog”, 
“Incomplete-splice match” and “Novel Not in Catalog” 
(Fig. 3A). Of the 240 true isoforms, most isoforms were 
of the class “Combination of Known Junctions” (~ 41.7%, 
Fig.  3B). Overall, the set of novel transcript isoforms 
identified in Nanopore sequence data exhibited a wide 
range of inferred transcript lengths, from 331 to 8,495 
nt, with a mean length of ~ 2,142 nt across all categories 
(Fig. 3C) and spanning all chromosomes (Supplementary 
Fig.  6) with a peak on chromosome 1. Consistent with 
previous literature [56], the identified novel isoforms 
were often multi-exonic, with a mean exon count of 7.9 
(Fig. 3D). These results highlight the potential to discover 
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Fig. 3  Characterization of novel isoforms identified by IsoQuant. A Structural category distribution for detected novel isoforms. The structural 
category for an isoform indicates its relation to the closest annotated transcript. B Structural subcategory distribution for detected novel isoforms. 
C The length distribution of transcripts, stratified by the relation to the annotated transcripts (represented by the assigned structural category). 
The center line represents the median; hinges represent first and third quartiles; whiskers the most extreme values within 1.5 interquartile range 
from the box. D The exon number distribution for identified isoforms
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novel isoforms using Nanopore direct RNA-seq on pri-
mary samples.

Investigating differential expression and polyadenylation 
between bacterial and viral infection
The samples we have studied here were a selected small 
subset of a larger study of 907 patients investigated via 
Illumina cDNA-seq for differences in host transcrip-
tional response associated with confirmed bacterial or 
viral infection [23]. The bacterial and viral pathogens 
detected in these samples is shown in Supplementary 
Table 7. It was of interest to see whether we could reca-
pitulate the major differentially expressed genes iden-
tified in this larger comparison using Nanopore direct 
RNA-seq. To this end, we carried out a differential gene 
expression analysis between Nanopore direct RNA-seq 

data on 6 patients with definite bacterial infection and 6 
patients with definite viral infection. A total of 9 signifi-
cant differentially expressed genes (DEGs) were identi-
fied when applying thresholds of adjusted P-value < 0.05 
and |log2FC|≥ 1. Of these, 8 DEGs were more highly 
expressed in patients with viral infection, while 1 was 
more highly expressed in patients with bacterial infec-
tion (Fig. 4A). Notably, all these 9 DEGs were consistent 
with DEG results obtained from Illumina cDNA-seq, in 
our previous work [23]. This consistency underscores 
the reliability and validity of our findings across differ-
ent sequencing platforms.

Following this, we focused on differential poly-
adenylation (DP) analysis using linear mixed-effects 
regression (lmer) [33]. Through the differential poly-
adenylation analysis of blood from 6 patients with viral 

Fig. 4  Differential expression and polyadenylation differences between bacterial vs viral infection. A Volcano plot of viral vs bacterial differential 
expression from Nanopore direct RNA-seq datasets. Red dots indicate differentially expressed genes (DEGs) using adjusted P-value < 0.05 
and |log2FC| ≥ 1 as cutoffs. B Volcano plot of differential polyadenylation results from linear mixed-effects regression (lmer). Red dots indicate DPGs 
using adjusted P-value < 0.05 and |log2FC| ≥ 0.5 as cutoffs. C-D Raincloud plots showing read-level polyadenylation estimates for top significantly 
differentially polyadenylated genes for C TPM4 (adjusted P-value = 0.00053), D PIP4K2A (adjusted P-value = 0.019). Each point corresponds to a single 
read
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infection and 6 patients with bacterial infection, using 
thresholds of adjusted P-value < 0.05 and |log2FC|≥ 0.5, 
we identified 19 differentially polyadenylated genes 
(DPGs). Among these, 12 DPGs (BIN1, CHI3L2, 
FLNA, FLT3LG, MTHFD2, PPP1R14B, PRKCSH, 
PSMB2, RSL24D1, STK40, TMED9, TPM4) exhibited 
increased polyadenylation, and 7 (IRF3, MAP1LC3B, 
MAP1LC3B2, PDCD10, PIP4K2A, PRMT1, TERF2IP) 
exhibited decreased polyadenylation in the samples 
from patients with viral compared to bacterial infec-
tion (Fig. 4B, Supplementary Table 8).

These observed differences showed more genes 
with DP than differential expression (DE), although 
with smaller effect sizes (Fig.  4A-B). Therefore, we 
applied a bootstrapping method to check the sensi-
tivity of our lmerTest approach. We found only 2 out 
of 19 genes being considered robustly DP (TPM4 and 
PIP4K2A) (Fig.  4C-D, Supplementary Fig.  7). There-
fore, secondary review of DPG’s is required. PCA 
plots based on gene expression and average poly(A) 
tail lengths did not show clear separation between the 
viral and bacterial samples, which may in part explain 
the lack of significant DEGs or DPGs between these 

datasets (Supplementary Figs.  8A-B). Nevertheless, 
these results show some significant variations in the 
dynamic regulation of gene expression at the post-
transcriptional level between viral and bacterial infec-
tions, and therefore, suggests the potential utility of 
polyadenylation as a disease biomarker.

Investigating differential transcript usage 
between patients with confirmed bacterial and viral 
infection
Next, we explored differential transcript usage (DTU)—
the variation in the proportion of different transcript 
isoforms per gene across different conditions—between 
blood samples from patients with viral and bacterial sep-
sis. Using DRIMSeq [36] and StageR [37], we observed 
significant DTU between viral and bacterial infection 
samples (Supplementary Tables  9–10). In total, four 
genes, SOD2, RPS21, CD36, and RPL37, showed signifi-
cant DTU with adjusted P-value < 0.05 (Supplementary 
Table  10). For the gene SOD2 (ENSG00000112096.19), 
transcript ENST00000367055.8 (adjusted 
P-value = 0.029) showed reduced usage, whereas tran-
script ENST00000538183.7 (adjusted P-value = 0.003) 

Fig. 5  Differential transcript usage occurs between bacterial and viral samples. A-D Differential estimated proportions of transcripts of genes for A) 
SOD2 (ENSG00000112096.19), B RPS21 (ENSG00000171858.18), C CD36 (ENSG00000135218.19), and D RPL37 (ENSG00000145592.14), with adjusted 
P-values < 0.05. Asterisks indicate transcripts which meet the adjusted P-value threshold of < 0.05
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exhibited increased usage in samples from patients 
with viral compared to bacterial infection (Fig.  5A; 
Supplementary Fig.  9). Similar patterns of differential 
transcript usage were identified for the genes RPS21 
(ENSG00000171858.18), CD36 (ENSG00000135218.19) 
and RPL37 (ENSG00000145592.14). These genes were 
of interest as, RPS21 and RPL37 are both genes encod-
ing ribosomal proteins [57], indicating the essential 
role of protein synthesis. SOD2 is a critical regulator of 
antiviral signaling [58], while CD36 is known to pro-
mote inflammatory responses and phagocytosis, pro-
cesses involved in the host response to both viral and 
bacterial infections [49, 59, 60]. For RPS21, transcript 
ENST00000343986.9 (adjusted P-value = 0.010) showed 
increased usage, while ENST00000450116.6 (adjusted 
P-value = 0.002) showed reduced usage (Fig.  5B). For 
CD36, both transcripts, ENST00000394788.7 and 
ENST00000447544.7 (adjusted P-values = 0.000 for 
both), showed significant changes in usage (Fig.  5C). 
Lastly, for RPL37 (ENSG00000145592.14), only transcript 
ENST00000504562.1 (adjusted P-value = 0.003) showed 
increased usage (Fig. 5D;Supplementary Fig. 1).

These findings highlight the utility of Nanopore RNA-
seq in uncovering differences in the host response to 
bacterial and viral infection. By identifying both known 
and novel transcripts, this technology provides critical 
insights into pathogen-specific gene expression, which 
could be pivotal for understanding the molecular mecha-
nisms underlying viral and bacterial infections.

Discussion
Nanopore direct RNA-seq has several advantages over 
other RNA sequencing approaches; 1) the real-time 
nature of Nanopore sequencing expedites data acquisi-
tion and analysis; 2) direct analysis of RNA molecules 
removes the need for cDNA sequencing, hence elimi-
nates the bias introduced by cDNA preparation; 3) it 
also enables continuous reads spanning many thousands 
of nucleotides, facilitating the identification of splice 
variants and novel transcript isoforms [61]; and 4) the 
unique 3’ priming method allows the full length detec-
tion of poly(A) tails on mRNA transcripts. While each of 
these features holds individual utility, their combination 
is unparalleled and promises to yield novel insights into 
RNA biology.

We first underscored a high level of agreement between 
Nanopore direct RNA-seq and Illumina cDNA-seq of 
mRNA levels within our blood mRNA samples, espe-
cially with the combination of NanoCount for Nanopore 
and Kallisto for Illumina sequencing (Fig.  1A). Correla-
tion analyses revealed concordance at the gene-to-gene 
levels (Fig. 1A-C), indicative of the reliability and consist-
ency of both technologies in capturing gene expression 

profiles. In short-read sequencing, the reads are often 
shorter than the transcripts they originate from, lead-
ing to multiple reads aligning consecutively to the gene 
locus in the reference genome. This can introduce a bias 
in measuring expression levels, as shorter transcripts 
may appear to be less expressed [62]. Therefore, the high 
agreement levels at the gene-to-gene level were surpris-
ing. However, the transcript-level analysis showed that 
the correlations were lower (Supplementary Fig. 3). This 
is more in line with our understanding that Illumina 
sequencing, with its shorter read lengths, is less effec-
tive at accurately capturing isoform level information, in 
which its biases and lack of correct transcript assignment 
would be exacerbated at the transcript level. We note that 
the common normalized count metric for short-reads is 
Transcripts Per Million (TPM) which accounts for gene 
length and while the same TPM metric is still used widely 
for long-read sequencing outputs, this usually does not 
include gene-length normalization, and functions more 
like Counts Per Million (CPM). When we explored 
gene length-dependent bias, Nanopore data analyzed 
with NanoCount showed evidence of gene-length bias 
towards shorter genes using the TPM metric without 
accounting for gene-lengths (p < 0.00001) (Supplemen-
tary Fig. 4B). Long-read sequencing theoretically should 
reduce such biases, as a single long read can cover most 
of the transcript. This discrepancy may be due to Nanop-
ore sequencing potentially overcounting shorter genes, as 
they pass through the Nanopore more quickly per read. 
It is common to find read-length distributions to be right 
skewed in ONT RNA-seq data, which may contribute to 
this phenomenon. Therefore, it may be beneficial to apply 
a gene-length-based normalization approach for Nanop-
ore data like for short-read sequencing and clarifying the 
definition of TPM in future studies. However, despite the 
significant correlation between gene-length and TPM, 
we note that the R2 value was low (R2 = 0.003). Therefore, 
improved RNA-seq quantification tools and appropri-
ate normalization protocols are needed to thoroughly 
address this issue and enhance the correlation between 
these two platforms.

Furthermore, we note that we observed better con-
sistency between Kallisto and other Nanopore RNA-seq 
tools compared to HTSeq for Illumina data analysis (Sup-
plementary Fig. 1), and this is partly because HTSeq does 
not use a probabilistic model for ambiguous reads. Given 
the high rates of multi-mapping in RNA-seq data, the use 
of probabilistic models is crucial for achieving precise 
abundance estimates [63]. Overall, further comparative 
assessments between Nanopore and Illumina RNA-seq 
expressions should be carried out to further examine 
these correlations with synthetic RNA with known con-
centrations, such as Sequins [64].
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Variation in results from the same RNA-seq tool across 
different samples may arise from biological differences, 
such as varying gene expression levels or RNA degrada-
tion, as well as technical factors like sequencing depth 
or RNA quality. Sample complexity, including isoform 
diversity, can also contribute to variability in quantifica-
tion. These factors can affect tool performance, leading to 
differences in transcript detection and abundance across 
samples [2, 65].

We utilized the unique capability of Nanopore RNA 
sequencing to explore polyadenylation in blood from 
patients with sepsis. The traditional understanding 
is that the average length of the poly(A) tail in mam-
malian mRNA is ~ 100–250 nt, at the initial synthesis 
stage within the nucleus. However, upon length regula-
tion of the poly(A) tail in the cytoplasm, the steady state 
length of the mRNA poly(A) tail has been identified to 
be shorter ~ 50–100 nt [17, 66]. In our study, our results 
agree with the idea that the average poly(A) tail length of 
non-mitochondrial transcripts in human blood mRNA is 
closer to ~ 80 nt (Fig.  2B). Furthermore, through subse-
quent GSEA based on poly(A) tail lengths, we identified 
specific pathways enriched with variations in polyade-
nylation. Interestingly, infection-, disease-related, ribo-
some- and oxidative phosphorylation-related pathways 
revealed shorter poly(A) lengths and immunity-related 
pathways such as JAK-STAT signalling pathway showed 
longer poly(A) lengths overall (Fig.  2E). We note that 
the group of KEGG pathways with shorter poly(A) tails 
such as Parkinsons Disease, Huntington Disease, Oxi-
dative Phosphorylation, Ribosome, Coronavirus dis-
ease—COVID-19, are commonly enriched together in 
viral infections, such as SARS-CoV-2 infections [67–70]. 
Considering our results were derived from patients 
with definite bacterial and viral infections, these find-
ings shed light on the functional implications of altering 
poly(A) tail length in cellular functions, and the differ-
ential enrichment of poly(A) tail lengths across various 
biological pathways. Previously, transcripts with shorter 
poly(A) tails were shown to undergo faster rates of decay 
[66], which suggests the rapid regulation of these genes 
involved in the aforementioned pathways. Although it 
has been universally understood that longer poly(A) tails 
may lead to increased translation efficiency, a recent 
report suggests otherwise, where highly expressed and 
translated transcripts contained a shorter poly(A) tail 
[14]. As it stands, the relationship between poly(A) 
length, expression and translation are still unclear and 
will need further investigations. Furthermore, the num-
ber of DPGs outweighed the number of DEGs between 
viral and bacterial samples (Fig.  4A-B). Through this 
result, we highlight the potential of polyadenylation as a 
plausible method of biomarker discovery for disease.

Our study also revealed numerous novel isoforms 
through Nanopore direct RNA-seq (Supplementary 
Table 6), highlighting the utility of long-read sequencing 
in discovering novel transcripts. The identified isoforms 
exhibited a diverse array of characteristics and were asso-
ciated with various biological processes, underscoring 
the complexity and heterogeneity inherent in the tran-
scriptome. Continued efforts to understand the diversity 
of the transcriptome is crucial in identifying causes and 
treatment options for disease, and novel isoform discov-
ery is one promising and important method of improv-
ing our understanding. As only long-read sequencing 
can capture the full lengths of transcripts, and therefore 
identify splicing patterns accurately within isoforms, we 
expect that Nanopore or Pacific Bioscience (PacBio) will 
continue to be utilized as gold standards for transcript 
isoform discovery in the near future.

Lastly, we identified significant differential transcript 
usage (DTU) for several genes between viral and bacte-
rial samples using both known and novel transcripts 
from Nanopore RNA-seq (Fig.  5). While differential 
gene expression is widely used in RNA-seq studies, 
DTU explores the transcriptome at the transcript/iso-
form-level and is less frequently studied. This approach 
provides crucial insights into pathogen-specific gene 
expression, which are essential for understanding the 
molecular mechanisms underlying viral and bacterial 
infections. For instance, our data analysis revealed only 
9 significant DEGs (Fig. 4A), but we were able to further 
interrogate the transcriptomic changes by visualizing the 
DTU at the gene level and isoform level (Fig.  5), which 
also highlights the potential of DTU being used for bio-
marker detection for disease states. However, it is impor-
tant to note that not all isoforms give rise to functional 
proteins and their presence could be a regulatory mech-
anism at the post-transcriptional level for a given gene. 
Therefore, their direct relationship to disease states can 
be difficult to ascertain. Despite this, this information is 
still useful for biomarker discovery.

There are, however, some shortcomings associated 
with Nanopore direct RNA-seq [28, 71, 72] in compari-
son with Illumina cDNA-seq. The throughput of Nano-
pore direct RNA-seq remains lower than that of other 
high-throughput sequencing platforms, such as Illumina 
cDNA-seq, potentially limiting its use in large-scale stud-
ies [71, 72]. Also, most available and established pipelines 
have been designed and tested for Illumina cDNA-seq, 
whereas most Nanopore RNA pipelines are newly devel-
oped by the user community and are less maintained 
and kept up to date in comparison. Furthermore, input 
requirements for Nanopore sequencing is much higher 
than that of Illumina cDNA-seq, especially with direct 
RNA-seq protocols. Although recent developments in 
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direct RNA-seq have allowed for lower input require-
ments, the lack of a PCR step in the protocol means that 
for precious or low-yield samples, e.g. clinical samples, 
ONT direct RNA-seq may not be feasible.

This current study has various limitations. We have 
explored a small number of samples (6 in each condi-
tion – bacterial vs viral infection), and the results of our 
statistical analyses will be enhanced by incorporating 
an increased number of samples. Furthermore, a major 
advantage of Nanopore direct RNA-seq is the ability to 
direct post-transcriptional modifications such as nucleo-
tide modifications [20], which we did not explore within 
this study. RNA modification analysis tools are rapidly 
evolving and being developed at unprecedented rates, 
with many variations in outcomes and there is currently 
no gold standard method for understanding RNA modi-
fications with direct RNA-seq. Currently, the newest 
versions of the ONT basecaller Dorado can detect RNA 
modifications during the basecalling for direct RNA-seq 
datasets, which has exponentially increased the ease of 
analyzing the modifications. We expect that with further 
improvements to the Dorado algorithm, accurate and 
rapid detection of modifications will be possible, which 
would lead to the potential use of this technique for bio-
marker detection, as we have discussed with polyadenyla-
tion and DTU. Finally, further experimental validation is 
required for understanding how poly(A) length and DTU 
variations could contribute to disease mechanisms, such 
as via RT-qPCR and ribosomal profiling.

Conclusions
Our comparison of the two sequencing technologies—
ONT direct RNA-seq and Illumina cDNA-seq—dem-
onstrates that, with the application of a well-optimized 
analysis pipeline, there is a strong correlation between 
gene expression estimates derived from both Illumina 
and Nanopore platforms. While there is evidence for 
slight gene-length bias towards shorter genes in ONT 
direct RNA-seq, the method offers unique advantages not 
provided by Illumina cDNA-sequencing. Notably, Nano-
pore RNA-seq reveals critical aspects of RNA regulation, 
such as variations in poly(A) tail length and the discov-
ery of novel isoforms, which are not easily detectable 
through Illumina cDNA-sequencing. We visualized the 
GO term-/KEGG pathway-specific poly(A) length distri-
bution of human blood mRNA using ONT direct RNA-
seq for the first time, to our knowledge. Additionally, our 
analysis identifies significant variations in poly(A) tail 
length that are closely related to molecular functions, 
offering a deeper understanding of gene expression and 
its regulatory mechanisms. Our results suggest that inte-
grating Nanopore direct RNA sequencing into research 
workflows could significantly enhance insights into RNA 

regulation and gene expression, providing valuable con-
tributions to understanding disease mechanisms.
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