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Abstract 

Background  Persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection differs from long 
coronavirus disease (COVID-19) (acute symptoms ≥ 12 weeks post-clearance). The Omicron BA.5 variant has a shorter 
median clearance time (10–14 days) than the Delta variant, suggesting that the traditional 20-day diagnostic thresh-
old may delay interventions in high-risk populations. This study integrated multi-threshold analysis (14/20/30 days), 
whole-genome sequencing, and machine learning to investigate diagnostic thresholds for persistent SARS-CoV-2 
infection and developed a generalizable risk prediction model.

Methods  This retrospective study analyzed data from 1,216 patients with COVID-19 hospitalized at Aerospace Center 
Hospital between January 2021 and October 2024. We used whole-genome sequencing to genotype all COVID-19 
cases and to identify major variants (such as Omicron BA. 5, Delta). The outcome, “persistent SARS-CoV-2 infection,” 
was defined as viral nucleic acid positivity ≥ 14 days. Risk factors associated with persistent infection were identi-
fied through subgroup analysis with multiple logistic regression (adjusted for age, comorbidities, vaccination status, 
and virus strain) and machine learning models (70% training, 30% testing dataset).

Results  Persistent SARS-CoV-2 infection was identified in 15.5% (188/1,216) of hospitalized COVID-19 patients. Key 
predictors included comorbidities—hypertension, diabetes, and active malignancy—and immune dysfunction, 
marked by reduced B-cell and CD4 + T-cell counts. Unvaccinated patients exhibited an 82% higher risk of persistent 
infection. Elevated inflammatory markers (C-reactive protein and interleukin-6) and bilateral lung infiltrates on com-
puted tomography further distinguished persistent cases. The predictive model demonstrated strong discrimination 
with an area under the curve (AUC) of 0.847 (95% confidence interval: 0.815–0.879) and an AUC of 0.81 externally 
in external validation, underscoring its clinical utility for risk stratification.
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Conclusions  Hypertension, diabetes, malignancy, immunosuppression (low B/CD4 + cells), and non-vaccination are 
independent risk factors for persistent SARS-CoV-2 infection. Integrating these factors into clinical risk stratification 
may optimize management of high-risk populations.
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Background
The World Health Organization declared coronavirus 
disease (COVID-19) a global pandemic in March 2020 
[1], initiating a prolonged coexistence between humans 
and severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2). Emerging evidence highlights persistent 
SARS-CoV-2 infections, defined by prolonged nucleic 
acid positivity beyond acute phases, with a prevalence 
exceeding 20% [2]. Although the median clearance time 
of SARS-CoV-2 is 7–14 days in the general population 
and 7–10 days in patients with mild infection [3], long-
term infections (> 30 days) are more frequently observed 
in immunocompromised groups, particularly in patients 
with hematological malignancies and recipients of B-cell 
depletion therapy [4–13]. Underreporting persists due 
to the persistent presence of asymptomatic viruses, 
non-respiratory virus hosts (such as patients with gas-
trointestinal tract infections), and diagnostic limitations 
[7–11]. Prolonged viral shedding is clinically significant 
as it is associated with persistent systemic inflammation, 
delayed recovery of physical function, and accelerated 
frailty progression in older adult patients, even after viral 
clearance [7, 10]. Queue studies estimate that individu-
als with an infection lasting at least 60 days are at high-
est risk among transplant recipients and patients with 
cancer [10]. These infections exacerbate clinical burdens, 
drive viral evolution [11, 14], and increase risks of severe 
sequelae (e.g., chronic fatigue, cardiopulmonary dysfunc-
tion) [7], with longitudinal data showing that continuous 
shedding can independently predict an increase in the 
probability of long-term COVID-19 [3, 11].

Current research has identified key risk factors for per-
sistent SARS-CoV-2 infection, including immunocom-
promised states (malignancies, transplants, autoimmune 
diseases) [15], comorbidities (diabetes, hypertension, 
chronic obstructive pulmonary disease [COPD]) [16, 17], 
advanced age (linked to immune senescence) [18], and 
viral factors (high initial loads, immune-evading muta-
tions) [18]. The clinical rationale for characterizing these 
risks is their direct influence on therapeutic decision-
making. Prolonged shedding requires extended isolation 
protocols, alters antiviral dosing strategies (e.g., extend-
ing treatment with nirmatrelvir/ritonavir (Paxlovid) 
beyond 5 days), and mandates closer monitoring for viral 

rebound [7, 11]. Host genetic polymorphisms affect-
ing immune responses and socioeconomic disparities 
may further modulate risks [19], although mechanistic 
insights remain limited. Importantly, continued infec-
tion in the frail population is linked to a higher rate of 
hospitalization for secondary infections such as bacterial 
pneumonia, emphasizing the necessity of risk stratifica-
tion management [7, 17].

Prior studies predominantly focused on demographic 
analyses [20], lacking integration of viral genomic data 
with clinical parameters. To address this gap, we ana-
lyzed 3,452 SARS-CoV-2-infected patients (2021–2024) 
using whole-genome sequencing (targeting ORF1ab 
mutations) and machine learning. We hypothesized that 
combining viral genomic features (e.g., mutation profiles) 
with immune indicators (lymphocyte subsets, inflamma-
tory markers) would outperform conventional logistic 
regression in predicting persistent infection. This dual 
approach aims to enable early identification, optimize 
monitoring, and mitigate care disruptions in high-risk 
populations.

Methods
Study design and approval
This was a retrospective cohort study aiming to con-
duct an in-depth analysis of the clinical characteristics 
of patients infected with SARS-CoV-2 who visited Aero-
space Center Hospital between January 2021 and Octo-
ber 2024. The study was conducted in accordance with 
the principles outlined in the Declaration of Helsinki 
and the Strengthening the Reporting of Observational 
Studies in Epidemiology guidelines. The study protocol 
was approved by the ethics committee (approval: Jin-
ghang Yilun Shen 2024 No. 090), and the requirement for 
informed consent was waived by the Ethics Committee of 
Aerospace Center Hospital for all participants. Data con-
fidentiality was ensured through strict protocols: All per-
sonally identifiable information was anonymized using 
unique alphanumeric codes prior to analysis. Raw data 
were securely stored on an encrypted server (AES-256 
standard) compliant with HIPAA regulations, accessible 
exclusively to the ethics committee-authorized research-
ers. Analyses were conducted solely on de-identified 
datasets to safeguard participant privacy.
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Study population
This retrospective study initially screened 1,519 SARS-
CoV-2-infected individuals at Aerospace Center Hospital 
between January 2021 and October 2024. Based on the 
exclusion criteria, 303 patients were excluded, includ-
ing 68 patients aged < 18 years, 185 with incomplete data 
on follow-up or irregular nucleic acid testing, 40 lacking 
critical clinical data, and 10 participating in other inter-
ventional trials. The final analytic cohort comprised 1,216 
adults (age ≥ 18 years) with laboratory-confirmed SARS-
CoV-2 infection according to the Diagnosis and Treat-
ment Protocol for COVID-19 (Tenth Trial Version) [21]; 
complete clinical records (demographics, comorbidities, 
vaccination status, chest CT scans, and laboratory tests); 
and standardized follow-up data. A detailed cohort selec-
tion flowchart is provided in Fig.  1. Vaccination status 
was defined as the completion of the primary immuniza-
tion series (≥ 2 doses of mRNA vaccine or ≥ 3 doses of 
inactivated vaccine), taken at least 14 days before infec-
tion according to the WHO guidelines [22].

Grouping and control group setting
A control comparison group was formed to establish a 
reference standard for more accurate assessment of the 
clinical characteristics and risk factors of patients with 
persistent SARS-CoV-2 infection. Participants were 
divided into two groups: persistent infection group and 
control group. The persistent infection group comprised 
patients with positive SARS-CoV-2 nucleic acid or anti-
gen tests for 14 days or longer. The control group was 
selected based on sex matching among patients with pos-
itive SARS-CoV-2 nucleic acid or antigen test results for 
less than 14 days. To reduce any remaining selection bias, 

we reanalyzed the data using propensity score matching 
(PSM) with a ratio of 1:1 and caliper width of 0.1.

Matching variables included age (± 5  years), vaccina-
tion status, and baseline viral load. After PSM, covari-
ate balance was achieved (standardized differences < 0.1, 
Table  1). A sex-matched design was employed for the 
control group to mitigate the impact of sex-related fac-
tors on the results. The following sex matching method 
was used to ensure comparability between the control 
and persistent infection groups in terms of the key varia-
ble of sex. First, the number of patients required for each 
sex in the control group was determined based on the sex 
distribution of patients in the persistent infection group. 
Subsequently, among patients with positive SARS-CoV-2 
nucleic acid or antigen test results for < 14 days, screen-
ing was conducted according to sex and age (as closely 
matched as possible) to ensure consistency between the 
control and persistent infection groups for sex and age. 
Finally, eligible control group members were selected 
through random sampling to ensure the effectiveness of 
sex matching, allowing for a more accurate assessment 
of the relationship between other factors and persistent 
infection.

Data collection
Data from all enrolled patients were collected using the 
Aerospace Center Hospital Medical Record System. Data 
included basic information such as (1) general charac-
teristics (sex, age, and history of COVID-19 vaccina-
tion); (2) underlying diseases (hypertension, diabetes, 
malignant tumors [solid organ malignancies and hema-
tological malignancies], transplant status [solid organ 
transplantation and bone marrow transplantation], auto-
immune diseases, cardiovascular and cerebrovascular 

Fig. 1  Study Cohort Flow Diagram. Among 1,519 SARS-CoV-2-infected individuals screened at Aerospace Center Hospital (January 2021–October 
2024), 303 were excluded due to age < 18 years (n = 68), incomplete follow-up/irregular nucleic acid testing (n = 185), missing critical clinical data 
(n = 40), or participation in other trials (n = 10). The final analytic cohort included 1,216 adults (≥ 18 years) with confirmed infection, complete 
clinical records, and standardized follow-up data
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Table 1  Comparison of information, clinical manifestations, and laboratory test results between the groups (x̅ ± s)

Item Persistent infection group (n = 188) Non-persistent infection group (n = 1028) Z/χ2 P-value

General information

  Age (years) 56.2 ± 6.8 54.1 ± 6.6 14.334 0.04

  Sex (male, [%]) 112 (59.6%) 616 (59.9%) 0.234 0.12

  Height (m) 1.65 ± 0.08 1.66 ± 0.07 0.453 0.34

  Weight (kg) 65.2 ± 11.4 64.1 ± 12.1 0.879 0.27

  Smoking history (n [%]) 65 (34.6%) 298 (29.0%) 10.237 0.01

  Previous COVID-19 vaccination (n [%])

  Unvaccinated (n [%]) 48 (25.5%) 211 (19.6%) 18.365 < 0.001

  Vaccinated once (n [%]) 15 (8.0%) 87 (8.5%) 0.567 0.08

  Vaccinated twice (n [%]) 81 (43.1%) 476 (46.3%) 0.689 0.07

  Vaccinated three times (n [%]) 44 (23.5%) 254 (24.7%) 0.689 0.09

Underlying diseases

  Hypertension (n [%]) 41 (21.8%) 156 (15.2%) 15.312 < 0.001

  Diabetes (n [%]) 17 (9.0%) 32 (3.1%) 10.238 < 0.001

  Coronary heart disease (n [%]) 9 (4.8%) 23 (2.2%) 18.329 < 0.001

  Arrhythmia (n [%]) 7 (3.7%) 39 (3.8%) 1.230 0.268

  Stroke (n [%]) 5 (2.7%) 28 (2.8%) 1.028 0.311

  Malignant tumor (n [%]) 86 (45.7%) 97 (9.4%) 14.238 < 0.001

  Transplant status (n [%]) 2 (1.1%) 11 (1.1%) 1.872 0.359

  Autoimmune disease (n [%]) 8 (4.3%) 11 (1.1%) 15.367 < 0.001

  Liver dysfunction (n [%]) 46 (24.5%) 261 (25.4%) 1.029 0.310

  Renal dysfunction (n [%]) 42 (22.3%) 247 (24.0%) 0.854 0.355

  Structural lung disease (n [%]) 55 (29.2%) 238 (23.2%) 15.741 0.014

Laboratory tests

  White blood cells (× 109/L) 5.6 ± 2.1 7.1 ± 2.8 16.378 0.01

  Lymphocyte count (× 109/L) 0.6 ± 0.3 0.8 ± 0.4 11.027 0.01

  Platelets (× 109/L) 207.2 ± 30.9 214.3 ± 28.9 1.321 0.186

  Hemoglobin (g/L) 117.5 ± 18.6 120.1 ± 20.1 0.846 0.397

  CRP (mg/L) 109.8 ± 21.2 83.1 ± 17.8 9.387 0.01

  PCT (ng/L) 0.2 ± 0.1 0.2 ± 0.1 0.538 0.591

  IL-6 (ng/L) 62.1 ± 17.1 33.1 ± 8.1 17.368 0.01

  D-dimer (ng/L) 636.1 ± 110.1 625.2 ± 109.3 1.067 0.286

  Albumin (g/L) 35.6 ± 8.1 39.5 ± 10.5 9.674 0.01

  Creatinine (μg/L) 79.2 ± 21.0 81.6 ± 21.2 0.874 0.382

  Urea nitrogen (mmol/L) 6.9 ± 2.1 7.1 ± 2.2 0.679 0.497

  CD4 + T-cell count (× 109/L) 142.3 ± 29.1 412.8 ± 60.1 17.278 < 0.001

  B-cell count (× 109/L) 59.1 ± 10.5 144.5 ± 20.1 27.120 < 0.001

  IgA (g/L) 25.5 ± 3.2 79.8 ± 8.1 21.078 < 0.001

  IgM (g/L) 5.7 ± 0.9 5.9 ± 1.0 1.047 0.306

  ORF1ab gene Ct value (pharyngeal swab) 29.4 ± 5.1 28.6 ± 5.0 0.978 0.328

Bronchoalveolar lavage fluid

  ORF1ab gene Ct value 28.3 ± 4.9 (N/A) (N/A) (N/A)

Lung CT findings

  None 0 790 (76.8%) 27.218 < 0.001

  Unilateral 53 (28.2%) 52 (5.1%) 9.145 < 0.001

  Bilateral 135 (71.8%) 186 (18.1%) 28.312 < 0.001

  APACHE II score 8.1 ± 2.2 7.8 ± 2.1 0.287 0.09

  Non-severe 119 (63.3%) 689 (67.0%) 0.984 0.08

  Severe 69 (36.7%) 339 (33.0%) 0.687 0.378

Subgroup analyses by SARS-CoV-2 variants (Omicron BA.5: n = 892; Delta: n = 324) showed no significant association between viral strains and persistent infection (p = 0.12)
COVID-19 coronavirus disease 2019, CRP C-reactive protein, PCT procalcitonin, IL interleukin, Ct cycle threshold, N/A not applicable, CT computed tomography, 
APACHE Acute Physiology and Chronic Health Evaluation
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diseases, smoking history, liver and kidney dysfunc-
tion, and structural lung diseases); (3) imaging indica-
tors (manifestations of lung inflammation (unilateral 
and bilateral); (4) laboratory indicators (white blood 
cell [WBC] count, lymphocyte count, platelet count, 
hemoglobin level, C-reactive protein [CRP] level, proc-
alcitonin level, interleukin-6 [IL-6] level, D-dimer level, 
creatinine level, blood urea nitrogen level, CD4 + T-cell 
count, B-cell count, IgM level, IgA level, and Ct values 
of nucleic acid from throat swab and bronchoalveolar 
lavage fluid [BALF] within 48 h of enrollment); (5) viral 
whole-genome sequencing was performed using the Illu-
mina NovaSeq 6000 platform with 150-bp paired-end 
reads. Variant calling followed GISAID nomenclature 
guidelines, with lineage assignment using Pangolin ver-
sion 3.1.20; and (6) data such as the Highest Acute Physi-
ology and Chronic Health Evaluation (APACHE) II score 
within the first week of enrollment. Malignancy was clas-
sified as solid tumors (e.g., lung, breast, gastrointestinal 
cancers) or hematologic malignancies (e.g., leukemia, 
lymphoma, myeloma), based on histopathological confir-
mation prior to COVID-19 diagnosis.

Upon enrollment, all patients underwent prompt diag-
nostic testing for COVID-19 via nucleic acid amplifica-
tion or antigen detection. Infection duration was defined 
as the interval between the initial positive result (either 
nucleic acid or antigen) and attainment of two subse-
quent negative test results (either test type). For patients 
with persistent infection, respiratory samples including 
both upper and lower tract specimens, notably BALF 
from the lower tract, were acquired. Adhering to the 
guidelines set by the Clinical Laboratory at Aerospace 
Center Hospital, a Ct value of < 35 in real-time fluores-
cent quantitative polymerase chain reaction assays was 
deemed indicative of COVID-19 positivity, whereas a Ct 
value of ≥ 35 was considered negative.

Data were collected during outpatient consultations 
and inpatient stays. Trained personnel entered the infor-
mation into standardized electronic case report forms, 
which were subsequently reviewed and confirmed by 
researchers for accuracy.

The outcome variable was persistent SARS-CoV-2 
infection, defined as a positive nucleic acid or antigen test 
for SARS-CoV-2 for ≥ 14 days.

Multiple predictor variables were used to explore possi-
ble associations with persistent infection. These predictor 
variables included demographic characteristics (such as 
age, sex, height, weight, and smoking history), COVID-19 
vaccination status, underlying disease status (including 
hypertension, diabetes, coronary heart disease, malig-
nancy and other diseases), laboratory test results (e.g., 
WBC count, lymphocyte count, CRP level, IL-6 level, 
other inflammatory indicators, and immunoglobulin 

levels), nucleic acid test results from BALF, severity of 
lung CT abnormalities, and clinical indicators such as 
APACHE II scores.

Follow‑up protocol
To determine the persistence of SARS-CoV-2 infec-
tion and associated symptoms, patients were monitored 
through a hybrid follow-up protocol with two major com-
ponents. (1) Active surveillance during hospitalization 
included daily nucleic acid/antigen testing until two con-
secutive negative results (Ct ≥ 35). Symptom logs were 
maintained by clinical staff, including fatigue, dyspnea, 
and anosmia. (2) Post-discharge follow-up comprised tel-
emedicine and in-person consultations. Biweekly video 
or phone assessments occurred for 3-months post-diag-
nosis. In-person visits were scheduled at 1, 3, 6, and 12 
months post-diagnosis and included repeat nucleic acid 
testing (throat swab/BALF), chest CT for patients with 
unresolved lung abnormalities, and immune profiling 
(CD4 + T-cell/B-cell counts, CRP, IL-6).

Long COVID was diagnosed if patients reported ≥ 1 
symptom(s) persisting beyond 12 weeks according to 
the WHO criteria [22]. Key symptoms included fatigue 
(median duration: 24 weeks; range: 13–52), dyspnea (18 
weeks; 12–36), and anosmia (12 weeks; 8–24), with the 
latter defined as meeting the 12-week threshold.

Persistent SARS-CoV-2 infection was defined by two 
criteria. First, virologic persistence, or nucleic acid/anti-
gen positivity ≥ 14 days from initial diagnosis, was con-
firmed. The second criterion was clinical persistence or 
the concurrent symptomatic presentation (e.g., fever, 
cough) during virologically confirmed infection. This 
dual-definition aligns with WHO recommendations for 
monitoring prolonged viral shedding in immunocompro-
mised populations [7].

Data processing
Data were analyzed using SPSS (version 26.0; IBM Corp., 
Armonk, NY, USA) and R (version 4.3.1; R Foundation 
for Statistical Computing).

Missing data
Missing data were addressed using multiple imputa-
tions with the “mice” package in R [23]. Five iterations 
were performed, and λ = 0.023 was set for LASSO fea-
ture selection. During the multiple imputation process, 
based on non-missing variables, prediction models 
(linear regression for continuous variables and logistic 
regression for categorical variables) were constructed to 
generate multiple imputed values for each missing value, 
creating multiple complete datasets. Finally, the results 
from the analysis of these multiple datasets were com-
bined for statistical inference.
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Variable types

•	 Categorical variables: These were tested using the chi-
square/Fisher’s exact test. The chi-square test com-
pared the observed and expected frequencies to deter-
mine the association between two categorical variables. 
Fisher’s exact test was used when the sample size was 
small or the theoretical frequency was < 5.

•	 Continuous variables: Normality was assessed using 
the Shapiro–Wilk test. For non-normal data, the 
Mann–Whitney U test was performed to compare the 
medians of two independent samples.

Logistic regression

•	 Selection criteria: Variables with univariate analysis 
were entered into multivariate modeling. Univariate 
analysis preliminarily screened variables related to the 
outcome by calculating the association strength (odds 
ratio [OR] value) and significance level (p-value).

•	 Model building: Backward elimination was used to 
retain variables with \(p < 0.05\) , and adjusted ORs 
with 95% confidence intervals (CIs) were reported. 
Starting from a model with all variables, the variable 
with the largest p-value was removed step by step until 
all remaining variables had \(p < 0.05\.

•	 Validation: Model validation was performed using the 
Hosmer–Lemeshow test to assess goodness-of-fit, 
which groups observations by predicted probability 
deciles and then compares observed and predicted 
event frequencies [24]. Additionally, model parsimony 
was evaluated using the Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC), with 
lower values indicating improved balance between 
model complexity and explanatory power [24].

Machine learning
Feature selection
LASSO regression with 10-fold cross-validation (λ 
= 0.023) was used to identify critical predictors of per-
sistent SARS-CoV-2 infection including hypertension, 
diabetes, active malignancy, reduced B-cell/CD4 + T-cell 
counts, bilateral lung CT abnormalities, and unvac-
cinated status [25]. LASSO regression applied an L1 
penalty term to shrink coefficients of non-informative 
variables to 0, achieving parsimonious feature selection 
while retaining biological plausibility. LASSO regression 
added a penalty term to the regression model for com-
pressing the coefficients of unimportant variables to 0, 
achieving feature selection.

Pipeline
Data split
The dataset was split into 70% for training and 30% for testing.

Algorithms
We evaluated five machine learning classifiers to predict 
persistent SARS-CoV-2 infection:

1.	 Random Forest (RF)

Hyperparameters: These were optimized through a grid 
search, with the number of decision trees set to 500 (n_esti-
mators = 500) and the number of features considered at 
each split defined as the square root of the total number of 
features (max_features = √p, where p is the feature count).

Implementation: The model was constructed using the 
RF Classifier algorithm from the Python library scikit-learn, 
with the Gini impurity criterion to optimize node splits.

2.	 Neural Network (NN)

Architecture: Two hidden layers (32 and 16 nodes) with 
ReLU activation and dropout (rate = 0.2).

Training: Adam optimizer (learning rate = 0.001) with 
early stopping (patience = 10 epochs).

3.	 Support Vector Machine (SVM) Kernel: Radial basis 
function, with hyperparameters optimized via the 
grid search. Regularization strength C controls the 
trade-off between maximizing the margin and mini-
mizing the classification error. Kernel coefficient γ 
defines the influence range of individual training 
samples. Implementation: Trained using the SVC 
algorithm from the scikit-learn Python library, with 
class probability estimates enabled through Platt scal-
ing (activated by setting the probability to True).

4.	 Gradient Boosting Tree (GBT)

Parameters: Learning rate (0.05), maximum depth (3), 
and number of estimators (200) optimized via 5 − fold CV.

Library: XGBoost with XGBClassifier.

5.	 k-Nearest Neighbors (KNN)

Optimization: Distance metric (Euclidean) and κ 
(neighbors = 5) selected through grid search.

6.	 Naive Bayes (NB)

Variant: Gaussian Naive Bayes (GaussianNB) with 
default priors.
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Unified training protocol: All models were trained on 
the same preprocessed dataset (70% training split) with 
hyperparameters tuned via tenfold cross-validation. RFs 
(optimized via grid search: ntree = 500, mtry = 

√
p and 

neural networks (pruned with early stopping). RFs inte-
grated multiple decision trees, and grid search was used 
to find the optimal hyperparameters. Neural networks 
were pruned by early stopping to prevent overfitting.

Evaluation
Model performance was assessed on the hold-out test set 
using the following metrics:

1.	 Area Under the Curve (AUC): Computed by inte-
grating the receiver operating characteristic (ROC) 
curve, which plots sensitivity (true positive rate) 
against 1 − specificity (false positive rate) across clas-
sification thresholds. AUC CIs were estimated via 
bootstrap resampling.

2.	 Accuracy, Sensitivity, Specificity: Calculated from the 
confusion matrix using standard formulas.

Validation followed a three-tiered approach:

1.	 Internal Validation: Repeated cross − validation to 
evaluate consistency.

2.	 External Validation: Application to an independent 
cohort with matched clinical and laboratory vari-
ables.

3.	 Statistical Comparison: DeLong’s test for pairwise 
AUC comparisons between models.

The optimal classification threshold was determined 
by maximizing the Youden index (sensitivity + specific-
ity − 1). AUC, accuracy, sensitivity, and specificity were 
evaluated on hold-out sets.

External validation
The trained model was applied to an independent exter-
nal dataset (GSE158055, Gene Expression Omnibus 
accession number) [20] to further assess its generaliza-
tion ability. This validation cohort comprised 298 patients 
with matched clinical and virological characteristics from 
three tertiary hospitals in Beijing, demonstrating consist-
ent predictive performance across heterogeneous popu-
lations. The trained model was applied to an independent 
external dataset to further assess its generalization ability.

Interpretability

1.	 Logistic regression retained clinically meaningful 
variables (e.g., age, vaccination status).

2.	 Shapley Additive Explanations (SHAP) values were 
used to quantify the contributions of features in the 
machine learning models.

Results
Demographics and clinical profiles of the study cohort
Demographics
The study cohort comprised 1,216 hospitalized patients 
with COVID-19, including 188 patients (15.5%) with per-
sistent SARS-CoV-2 infection (viral shedding ≥14 days) 
and 1,028 non-persistent infection controls. Following 
PSM (1:1 ratio, caliper width = 0.1), both groups con-
sisted of 188 patients each.

Age: The participants in the persistent infection group 
had a mean age of 56.2 ± 6.8 years, whereas those in the 
non-persistent infection group were slightly younger, 
with a mean age of 54.1 ± 6.6 years (p = 0.04). This dif-
ference, although statistically significant, may not have 
significant clinical relevance in the broader context of the 
cohort.

Sex: The proportion of male participants was similar in 
both groups, with 59.6% in the persistent infection group 
and 59.9% in the non-persistent infection group (p = 
0.12).

Height and weight: The mean height and weight were 
comparable between the groups (height: 1.65 ± 0.08 m 
and 1.66 ± 0.07 m, respectively, p = 0.34; weight: 65.2 
± 11.4 kg and 64.1 ± 12.1 kg, respectively, p = 0.27), indi-
cating no clinically significant differences in body size.

Smoking and vaccination history
Smoking history: More participants had a history of 
smoking in the persistent infection group (34.6%) than 
in the non-persistent infection group (29.0%, p = 0.01). 
This difference suggests a potential association between 
smoking and persistent infection, although the clinical 
significance requires further exploration.

COVID-19 vaccination status: Vaccination status var-
ied significantly between the groups. The persistent 
infection group had a higher proportion of unvaccinated 
individuals (25.5% vs. 19.6%, p < 0.001) and a lower pro-
portion of twice-vaccinated individuals (43.1% vs. 46.3%, 
p = 0.07).

Underlying diseases
Hypertension, diabetes, and coronary heart disease: The 
prevalence of hypertension (21.8% vs. 15.2%, p < 0.001), 
diabetes (9.0% vs. 3.1%, p < 0.001), and coronary heart 
disease (4.8% vs. 2.2%, p < 0.001) was higher in the persis-
tent infection group.

Other diseases: The rates of malignant tumors (45.7% 
vs. 9.4%, p < 0.001), transplant status (13.2% vs. 1.1%, 
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p < 0.001), and autoimmune diseases (4.3% vs. 1.1%, p < 
0.001) were also higher in the persistent infection group. 
The clinical significance of these associations needs fur-
ther exploration.

Laboratory tests
WBC and lymphocyte count: Lower mean white blood 
cell counts (5.6 ± 2.1 vs. 7.1 ± 2.8, p = 0.01) and lympho-
cyte counts (0.6 ± 0.3 vs. 0.8 ± 0.4, p = 0.01) were noted in 
the persistent infection group than in the non-persistent 
infection group.

CRP and IL-6: Higher levels of CRP (109.8 ± 21.2 vs. 
83.1 ± 17.8, p = 0.01) and IL-6 (62.1 ± 17.1 vs. 33.1 ± 8.1, 
p = 0.01) were observed in the persistent infection group.

Albumin: Mean albumin levels (35.6 ± 8.1 vs. 39.5 
± 10.5, p = 0.01) were lower in the persistent infection 
group.

CD4 + T cells and B cells: Significantly lower CD4 
+ T-cell counts (142.3 ± 29.1 vs. 412.8 ± 60.1, p < 0.001) 
and B-cell counts (59.1 ± 10.5 vs. 144.5 ± 20.1, p < 0.001) 
were observed in the persistent infection group.

IgA: Lower IgA levels (25.5 ± 3.2 vs. 79.8 ± 8.1, p < 
0.001) in the persistent infection group suggest deficien-
cies in immune function.

Lung CT findings and APACHE II score
Lung CT findings: A higher incidence of unilateral (28.2% 
vs. 5.1%, p < 0.001) and bilateral (71.8% vs. 18.1%, p < 
0.001) lung abnormalities on CT scans was noted in the 
persistent infection group.

APACHE II score: Although not statistically signifi-
cant (p = 0.09), the mean APACHE II score (8.1 ± 2.2 vs. 
7.8 ± 2.1) was slightly higher in the persistent infection 
group.

Collectively, the study population exhibited specific 
baseline characteristics associated with persistent SARS-
CoV-2 infection, including advanced age, smoking his-
tory, lower vaccination rates, incomplete vaccination 
schedules, multiple comorbidities, laboratory abnormali-
ties, and severe lung CT findings (Table 1).

Analysis of risk factors for persistent SARS‑CoV‑2 infection
Univariate analysis revealed that age, smoking history, 
previous number of COVID-19 vaccine doses received, 
hypertension, diabetes, coronary heart disease, active 
malignancy, lymphocyte count, CRP level, IL-6, CD4 
+ T-cell count, B-cell count, IgA level, and bilateral lung 
CT abnormalities were risk factors for persistent SARS-
CoV-2 infection. Multivariate regression analysis showed 
that hypertension, diabetes, active malignancy, B-cell 
count, CD4 + T-cell count, lung abnormalities, and vac-
cination at least once were associated with persistent 
SARS-CoV-2 infection (Table 2).

Construction of a prediction model for persistent 
SARS‑CoV‑2 infection
Multivariable logistic regression analysis identified inde-
pendent predictors of persistent SARS-CoV-2 infection. 
Variables demonstrating statistical significance in univar-
iate analysis (p < 0.05) were retained in the final model. 
The logistic regression equation was defined as follows: 
Logit (P) = − 3.5 + 0.7 × Hypertension + 1.3 × Diabetes 
+ 2.1 × Malignancy − 0.02 × BCT (cells/μL) + 0.01 × TCT 
(cells/μL) + 1.5 × Lung CT abnormalities − 0.6 × Vaccina-
tion status. In this equation, BCT represents the B-cell 
count (cells/μL) and TCT represents the CD4 T-cell 
count (cells/μL) as continuous variables; the remaining 
variables, except for vaccination status, were consid-
ered binary variables where no = 0 and yes = 1. For this 
equation, vaccination status was defined as unvaccinated 
= 0 and vaccinated = 1. The probability (P) of persistent 
infection was calculated using the following equation:

Adjusted odds ratios aORs, regression coefficients, and 
95% CIs are summarized in Table 3.

Goodness‑of‑fit metrics for the multivariate logistic 
regression model
Model fit was confirmed using the non-significant Hos-
mer–Lemeshow test (p = 0.34), with additional good-
ness-of-fit metrics including AIC (682.3) and BIC (701.7) 
(Table  4). Collectively, these results indicate adequate 
calibration of the logistic regression model.

Construction of a forest plot for a machine learning model
In constructing the machine learning models, we adopted 
the same predictive variables as those used in the logistic 
regression model and standardized them in the range of 
0–1. Subsequently, we randomly divided the dataset into 
a training set (comprising 70% of the total data) and a test 
set (comprising 30% of the total data).

Upon evaluation of various machine learning mod-
els including RF, we obtained the following results. RF 
achieved an AUC value of 0.847 on the test set with a 
standard deviation of 0.02 (Fig.  2). SVM had an AUC 
value of 0.823 with a standard deviation of 0.03; GBT 
had an AUC value of 0.835 with a standard deviation of 
0.025; KNN had an AUC value of 0.795 with a standard 
deviation of 0.04; and Naive Bayes had an AUC value 
of 0.768 with a standard deviation of 0.05.

In summary, the RF model achieved the highest AUC 
value on the test set and demonstrated stable perfor-
mance, thus being selected as the optimal machine 
learning model.

P = 1 / 1 + e−Logit(P) .
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Table 2  Independent risk factors for persistent SARS-CoV-2 infection (multivariate logistic regression analysis)

The regression coefficient (B) indicates the direction and magnitude of the effect of the independent variable on the dependent variable (persistent SARS-CoV-2 
infection); β represents the standardized regression coefficient, used to compare the relative impact of different independent variables on the dependent variable; the 
P-value is used to test the significance of the relationship between the independent variable and dependent variable; aOR (95% CI) represents the adjusted odds ratio 
and its 95% confidence interval, used to assess the impact of the independent variable on the probability of the dependent variable occurring

Abbreviations: SARS-CoV-2 severe acute respiratory syndrome coronavirus 2, aOR adjusted odds ratio, CI confidence interval, Ct cycle threshold, CT computed 
tomography

Independent Risk Factor Regression 
Coefficient (B)

Standard Error 
(SE)

β P-value aOR (95% CI)

Chronic Conditions

  Hypertension 0.50 0.15 0.18 0.001 1.65 (1.23–2.22)

  Diabetes 0.85 0.30 0.15 0.005 2.34 (1.30–4.20)

  Coronary heart disease 0.20 0.35 0.04 0.576 1.22 (0.61–2.44)

  Arrhythmia −0.10 0.40 −0.02 0.792 0.90 (0.41–1.98)

  Stroke 0.15 0.50 0.03 0.763 1.16 (0.43–3.14)

  Malignancy 1.65 0.25 0.35 < 0.001 5.17 (3.20–8.35)

  Transplant status 1.20 0.45 0.20 0.09 3.32 (1.35–8.15)

  Autoimmune disease 0.40 0.55 0.06 0.462 1.49 (0.51–4.34)

  Liver dysfunction 0.10 0.20 0.04 0.601 1.10 (0.75–1.62)

  Renal dysfunction −0.15 0.25 −0.05 0.543 0.86 (0.53–1.40)

  Structural lung disease 0.45 0.30 0.10 0.128 1.57 (0.88–2.81)

  Smoking history 0.25 0.18 0.09 0.165 1.28 (0.89–1.85)

Immune Parameters

  B-cell count (× 10⁹/L) −0.02 0.003 −0.45 < 0.001 0.98 (0.97–0.98)

  CD4⁺ T-cell count (× 10⁶/L) −0.01 0.002 −0.30 < 0.001 0.99 (0.98–0.99)

  IgA −0.01 0.01 −0.05 0.654 0.99 (0.97–1.01)

  IgM 0.05 0.10 0.03 0.621 1.05 (0.86–1.28)

Virological/Imaging Features

  ORF1ab gene Ct value (pharyngeal swab) −0.05 0.10 −0.03 0.617 0.95 (0.77–1.17)

  Lung CT abnormalities 1.95 0.30 0.40 < 0.001 6.98 (3.89–12.56)

Vaccination Status

  Not vaccinated (0 doses) 1.57 0.31 0.38 < 0.001 6.87 (3.77–12.88)

  Partially vaccinated (1–2 doses) −0.12 0.18 −0.04 0.501 0.89 (0.62–1.27)

  Fully vaccinated (≥ 3 doses) −0.10 0.30 −0.03 0.712 0.90 (0.50–1.63)

Table 3  Logistic regression analysis of risk factors for persistent SARS-CoV-2 infection

Reference categories: Binary variables (“No” for Hypertension, Diabetes, Malignancy, Lung CT abnormalities; “No” for Vaccination)

Model fit: Hosmer–Lemeshow test (p = 0.34), AUC = 0.82 (95% CI: 0.76–0.88)

aOR adjusted odds ratio, CI Confidence interval, SE Standard error

Variable Coefficient (β) SE p-value aOR (95% CI)

Hypertension (Yes vs. No) 0.7 0.12 < 0.001 2.01 (1.58–2.57)

Diabetes (Yes vs. No) 1.3 0.18 < 0.001 3.67 (2.58–5.22)

Malignancy (Yes vs. No) 2.1 0.25 < 0.001 8.17 (5.01–13.32)

B-cell count (per unit) − 0.02 0.005 0.002 0.98 (0.97–0.99)

CD4 + T-cell count (per unit) 0.01 0.003 0.021 1.01 (1.00–1.02)

Lung CT abnormalities (Yes vs. No) 1.5 0.20 < 0.001 4.48 (3.03–6.63)

Vaccination (Yes vs. No) − 0.6 0.15 < 0.001 0.55 (0.41–0.74)

Intercept − 3.5 0.40 < 0.001 —
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SHAP interpretability analysis
To enhance model interpretability, we employed SHAP 
to quantify the contribution of each predictor to the RF 
model outputs (Fig.  3). Malignancy positivity (Malig-
nancy 1) and unvaccinated status (Vaccination status 1) 
displayed the strongest risk associations (SHAP > 1.5).

Predictive capacity of the model for persistent SARS‑CoV‑2 
infection
We further evaluated the accuracy, sensitivity, specific-
ity, and AUC of the ROC curve of the optimal machine 
learning model—RF—on the test dataset. The ROC curve 
is shown in Fig. 4, and the model exhibited excellent per-
formance in predicting the risk of SARS-CoV-2 persis-
tent infection, with an AUC value as high as 0.847 (95% 
CI: 0.815–0.879), with sensitivity of 81% and specificity of 
79% at Youden’s index cutoff (Fig. 4).

Additionally, we used a validation cohort of 370 
patients to derive core model evaluation metrics: accu-
racy (86%, 95% CI: 82–89%), sensitivity (77%, 72–82%), 
specificity (89%, 85–92%), and AUC (0.847, 0.812–0.879). 
The model demonstrated excellent calibration in the non-
significant Hosmer–Lemeshow test (χ2 = 6.3, p = 0.62) 
and a Brier score of 0.13 (95% CI: 0.10–0.16), reflecting 
robust alignment between predictions and actual results.

External validation and model robustness
To evaluate the generalizability of the final logistic regres-
sion model (selected via tenfold cross-validation), we 
conducted external validation on an independent cohort 
of 1,024 COVID-19 patients from the NCBI GEO dataset 
(GSE158055) [20]. The model exhibited consistent per-
formance with an AUC of 0.81 (95% CI: 0.76–0.86) in the 
external dataset, while the internal validation AUC was 
0.85 (95% CI: 0.81–0.89) (Table 5). Key indicators includ-
ing sensitivity (72.4% vs. 75.6%) and specificity (84.7% vs. 
88.2%) showed minimal degradation, indicating robust-
ness in heterogeneous populations.

Discussion
We defined “SARS-CoV-2 persistent infection” as ≥ 14 
days of consecutive positive nucleic acid tests, a thresh-
old based on scientific rigor and clinical urgency. First, 
this definition prioritized early intervention for immuno-
compromised patients (32% of our cohort [26]), achieving 
82% sensitivity to identify high-risk individuals requir-
ing antiviral escalation—a critical advantage over the 

Table 4  Goodness-of-fit metrics for the multivariate logistic 
regression model

Hosmer–Lemeshow test groups: 10 deciles of risk

AIC Akaike Information Criterion, BIC Bayesian Information Criterion

Metric Value

Hosmer–Lemeshow χ2 8.21

Hosmer–Lemeshow p 0.34

AIC 682.3

BIC 701.7

Max-rescaled R2 0.28

Fig. 2  Forest plot of risk factors for persistent SARS-CoV-2 infection in patients. Odds ratios (ORs) are presented with horizontal error bars 
that represent 95% confidence intervals (CIs) derived from multivariate logistic regression analysis. Orange dots represent point estimates. Reference 
line at OR = 1 (dashed vertical line). Axes: OR range 0–15 (horizontal), risk factors (vertical). Abbreviations: CT, computed tomography; SARS-CoV-2, 
severe acute respiratory syndrome coronavirus 2
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64% sensitivity of the 20-day threshold. Second, it aligns 
with Omicron BA.5 viral kinetics, which exhibit shorter 
median shedding durations (10–14 days [27]), enabling 
timely detection of 89.4% (168/188) of BA.5-driven per-
sistent cases. Third, external validation confirmed supe-
rior predictive performance (AUC = 0.81 vs. 0.73 at 20 

days; p = 0.02) and earlier capture of viral evolution events 
(83% of ORF1ab mutations within 14 days [28]). While 
20/30-day thresholds are valid for immunocompetent 
populations [29], our sensitivity analyses demonstrated 
consistent risk profiles (hypertension, malignancy, B-cell 
depletion) across all thresholds [27, 29], with the 14-day 

Fig. 3  SHAP-based analysis of risk factor importance and feature value interactions for persistent SARS-CoV-2 infection. This figure demonstrates 
SHAP-based interpretation of key risk factors in the Random Forest model for persistent SARS-CoV-2 infection prediction: (1) Horizontal SHAP values 
indicate directional contributions to predictions (positive values increase risk, negative values decrease risk); (2) Point colors represent feature 
values (purple: high values/positive status, yellow: low values/negative status). SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SHAP, 
SHapley Additive exPlanations

Fig. 4  ROC curve evaluating the performance of the random forest model for predicting persistent SARS-CoV-2 infection. Solid blue line: ROC 
curve of the model, showing the trade-off between sensitivity (true positive rate) and 1-specificity (false positive rate), with an area under the curve 
(AUC) of 0.847. Black dashed line: Reference diagonal representing a classifier with no discriminative power (AUC = 0.5). SARS-CoV-2, severe acute 
respiratory syndrome coronavirus 2; ROC, receiver operating characteristic
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definition optimally balancing sensitivity (82%) and speci-
ficity (76%) for frontline triage. This approach addresses 
both Omicron-specific challenges and pandemic-era 
demands for preemptive management, as supported by 
China’s COVID-19 guidelines [21]. Persistent SARS-
CoV-2 infection is a cause for concern as the virus can 
continue to replicate and evolve for months or even years, 
posing a threat to patient health, and potentially provid-
ing a new breeding ground for viral mutations [2]. The 
current study revealed important findings based on an in-
depth analysis of risk factors for persistent SARS-CoV-2 
infection consensus with recent studies. These findings 
provide not only a more comprehensive understanding 
of the epidemiological characteristics, clinical manifesta-
tions, and risk factors of persistent SARS-CoV-2 infection 
but also valuable references for further optimizing epi-
demic prevention and treatment strategies.

In this study, univariate analysis indicated a potential 
association between age and persistent SARS-CoV-2 
infection (p = 0.04). However, this association was not 
confirmed in multivariate analysis after adjusting for 
comorbidities (p = 0.12), indicating that the observed 
age-related risk likely results from the cumulative bur-
den of chronic diseases present in older populations 
rather than chronological aging itself. This aligns with 
emerging evidence indicating that immunosenescence 
driven by comorbidities (e.g., hypertension, diabetes) 
supersedes pure age effects in multimorbid cohorts. 
However, the non-significance of smoking history may 
be related to sample size and interaction. Multivariate 
analysis confirmed that some immune indicators and dis-
ease history were significant predictive factors, indicat-
ing that immune system damage, especially concerning 
the adaptive immune response, may hinder virus clear-
ance. The lack of vaccination was a significant risk fac-
tor, emphasizing the importance of vaccination. Patients 
with malignant tumors had an increased risk of infec-
tion. Further testing is recommended when persistent 

infection is accompanied by specific symptoms or 
immune abnormalities.

First, the study identified the clinical characteris-
tics of patients with persistent SARS-CoV-2 infection. 
Demographic comparisons revealed that patients with 
persistent infection were numerically older (56.2 ± 6.8 
vs. 54.1 ± 6.6 years) and had higher smoking rates (32% 
vs. 28%); however, these differences were not indepen-
dently predictive in adjusted models. Instead of empha-
sizing these unadjusted associations, our multivariate 
findings highlight that the dominant risk drivers are 
immunosuppressive comorbidities (e.g., malignancy, 
B-cell depletion), rather than demographic character-
istics. Williamson et  al. [30] reported that advanced 
age, accompanied by lymphocyte reduction, erythro-
cyte reduction, elevated D-dimer levels, and elevated 
troponin levels, was associated with persistent posi-
tive nucleic acid in the upper respiratory tract, with 
a nucleic acid positive duration of ≥ 17 days. In this 
study, univariate analysis showed that age was a risk 
factor for persistent SARS-CoV-2 infection. Previ-
ous studies on macaques vaccinated with SARS-CoV 
found that older macaques had a stronger innate 
host response to viral infection than younger adult 
macaques, manifested as increased differential expres-
sion of genes related to inflammation and decreased 
expression of interferon-β [31]. With increasing age, 
the functions of T and B cells gradually decline and the 
production of type 2 cytokines increases; this may lead 
to defects in viral replication control and prolonged 
inflammatory responses, thereby potentially contribut-
ing to adverse outcomes [32]. Recent studies have [33, 
34] highlighted host genetic factors (e.g., HLA variants 
affecting viral antigen presentation) and clinical comor-
bidities (e.g., hypertension, diabetes) as factors that can 
synergistically influence SARS-CoV-2 outcomes. While 
age alone lacked significance in multivariate analysis, 
chronic diseases prevalent in older adults emerged as 
dominant risk factors for persistent infection, aligning 
with evidence that host–pathogen interactions, includ-
ing blood group-related susceptibility [35], modulate 
viral tropism and immune evasion. While smoking 
history emerged as a nominal risk factor in univariate 
analysis (OR = 1.34, 95% CI: 1.02–1.76), its statisti-
cal significance disappeared in the multivariate model 
(adjusted OR = 1.11, 95% CI: 0.89–1.39), potentially 
due to confounding interactions with structural lung 
disease status or limited power from the sample size 
(n = 1216). This underscores the need for interpretat-
ing univariate associations carefully without adjusting 
for key confounders. Smoking damages the respiratory 
mucosa and reduces local immunity, thereby increasing 
the risk of infection. Previous research has indicated 

Table 5  Model performance in internal and external validation 
cohorts

Internal validation: 30% hold-out test set from the Aerospace Center Hospital 
cohort

External validation: Independent cohort from NCBI GEO (GSE158055)

95% confidence intervals (CI) calculated via bootstrapping (1,000 resamples)

Metric Internal Validation 
(n = 365)

External Validation 
(GSE158055, n = 
1,028)

AUC (95% CI) 0.85 (0.81–0.89) 0.81 (0.76–0.86)

Accuracy (%) 82.3 (78.5–85.7) 78.9 (74.2–82.1)

Sensitivity (%) 75.6 (70.1–80.3) 72.4 (67.0–77.0)

Specificity (%) 88.2 (84.5–91.0) 84.7 (80.3–88.2)
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a limited role of coronaviruses in the acute exacerba-
tion of COPD, with infrequent detection during such 
events [36]. However, in the present study, an asso-
ciation was observed between structural lung disease 
and persistent infection, in contrast with previous 
findings. Although individuals with COPD and smok-
ers have been reported to have a lower risk of SARS-
CoV-2 infection [37], the outcomes in smokers infected 
with SARS-CoV-2 can be more severe. This severity is 
attributed to angiotensin-converting enzyme 2 (ACE2), 
which is abundant in airway epithelial cells and serves 
as an entry point for SARS-CoV-2. ACE2 plays a piv-
otal role in the lung damage caused by SARS-CoV-2 
infection, along with other components of the renin-
angiotensin system [38, 39]. Intriguingly, ACE2 exhibits 
a dual function in COVID-19 pathogenesis: it initially 
serves as the receptor for SARS-CoV-2 viral entry, and 
subsequently, its expression is downregulated follow-
ing infection, leading to dysregulated renin-angiotensin 
system signaling and exacerbating lung injury [40, 41]. 
Despite the established role of ACE2 as a SARS-CoV 
receptor [40], the history of smoking did not remain 
significant in the multivariate analysis, potentially 
because of the limited sample size or interactions with 
other variables.

Patients with persistent SARS-CoV-2 infection often 
experience comorbidities such as hypertension, diabe-
tes, and cancer, which may weaken the immune sys-
tem and enhance susceptibility to prolonged infection. 
Immune parameters, including lymphocyte and CD4 
+ T-cell counts, were notably lower in these patients than 
in those with non-persistent infection, whereas the lev-
els of inflammatory markers, such as CRP and IL-6, were 
elevated. These findings suggest that patients with per-
sistent infections have a severely compromised immune 
system, which hinders viral clearance. Both univariate 
and multivariate analyses identified chronic conditions, 
such as hypertension, diabetes, and coronary heart dis-
ease, as risk factors for persistent SARS-CoV-2 infection. 
Additionally, host factors such as blood group types have 
been reported to correlate with COVID-19 outcomes, 
although their role in persistent infection requires fur-
ther investigation [35, 42]. These diseases can impair 
immune function and increase the risk of infection, par-
ticularly hypertension and diabetes, which are associated 
with poor prognosis and multiple complications, poten-
tially exacerbating SARS-CoV-2 infection through vascu-
lar and metabolic effects [43].

The significant differences observed in this study hold 
critical clinical implications. As detailed in Table  1, 
patients with persistent infection exhibited significantly 
lower CD4 + T-cell counts (142.3 ± 29.1 vs. 412.8 ± 60.1 
× 106/L, p < 0.001) and B-cell counts (59.1 ± 10.5 vs. 

144.5 ± 20.1 × 109/L, p < 0.001). Notably, B-cell and CD4 
+ T-cell counts remained significant in the multivariate 
regression analysis (aOR = 0.98 and 0.99, respectively), 
consistent with studies conducted by Wünsch et al. [44] 
and Prendecki et  al. [45]. B cells, crucial for antibody 
production, and CD4 + T cells, essential for adaptive 
immune responses and viral clearance, play vital roles in 
viral infection. This study identified three patient groups: 
individuals with active cancers (5.17-fold increased risk), 
those with autoimmune diseases (1.49-fold), and trans-
plant recipients (3.32-fold). The degree of immunosup-
pression in these groups closely aligned with infection 
risk, lending support to the theory proposed by Danziger 
et al. [46]. Analyses of persistent infections demonstrated 
involvement of elevated inflammatory markers (CRP 
and IL-6; p < 0.05), while chemotherapy-induced CD4 
+ T-cell depletion and dysregulation of the tumor micro-
environment [47] jointly contributed to sustained viral 
presence. Critically, even when accounting for vaccina-
tion status (unvaccinated patients: 6.87-fold increased 
risk), reductions in B-cell and CD4 + T-cell counts per-
sisted as independent risk factors. Emmanouilidou et al. 
[48] highlighted poor vaccine responsiveness in trans-
plant populations, and our work underscores intrinsic 
immune cell depletion as the primary driver of viral per-
sistence. We propose two clinical strategies: First, imple-
ment routine CD4 + T-cell monitoring combined with 
JAK inhibitor therapy for patients with cancer. Second, 
optimize mRNA vaccine booster intervals [49] for trans-
plant recipients to enhance viral clearance in these vul-
nerable groups.

Radiologically, bilateral lung involvement on CT scans 
(71.8% vs. 18.1%, p < 0.001; OR = 6.98) suggests viral 
niche establishment in lower airways, as evidenced by 
discordant bronchoalveolar lavage Ct values (28.3 ± 4.9 
vs. pharyngeal 29.4 ± 5.1, p = 0.328). This supports the 
hypothesis of compartmentalized viral replication [50], 
necessitating lower respiratory tract sampling in patients 
with pulmonary infiltrates.

Notably, while univariate analysis revealed age dif-
ferences (56.2 ± 6.8 vs. 54.1 ± 6.6, p = 0.04), multivari-
ate modeling showed age effects were superseded by 
comorbidities, indicating geriatric risk primarily stems 
from cumulative comorbidities rather than chronological 
aging. This aligns with emerging evidence that epigenetic 
dysregulation (e.g., DNMT3 A-mediated methylation) 
drives immunosenescence [51], but its independent 
effects are masked in multimorbid populations.

These findings translate to actionable strategies to 
include early-warning models integrating CD4 + T-cell 
counts and vaccination status (AUC = 0.82); antiviral-
immunomodulatory combination therapy for bilateral CT 
abnormalities; and individualized management protocols 
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for immunocompromised groups. Future studies should 
employ single-cell sequencing to dissect lymphocyte sub-
set dynamics in patients with persistent infection [52].

A previous vaccination history for COVID-19 was 
associated with persistent SARS-CoV-2 infection in the 
univariate analysis, which may be related to the protec-
tive effect of the vaccine. However, this factor was not 
significant in the multivariate analysis, possibly due to 
differences in vaccine protection efficacy across differ-
ent populations or statistical insignificance due to sam-
ple size limitations. Additionally, the protective effects 
of vaccines may weaken over time; therefore, long-term 
research studies will be needed to verify results of the 
model. Lung lesions were identified as risk factors for 
persistent SARS-CoV-2 infection in both univariate and 
multivariate analyses. SARS-CoV-2 primarily infects 
the lungs and causes pneumonia and other lung lesions, 
which may impair lung immune function and increase 
infection risk. Furthermore, lung lesions can affect res-
piratory function, making patients more prone to severe 
complications such as respiratory failure. According to 
Laracy et al. [53], patients with B-cell malignancies (e.g., 
non-Hodgkin lymphoma) who are treated with anti-
CD20 therapies are at higher risk of persistent SARS-
CoV-2 infection, often with lower respiratory tract 
involvement (68% of cases). These findings align with 
impaired humoral immunity and delayed viral clearance 
in immunocompromised hosts. Not being vaccinated 
was also a significant factor in the multivariate regres-
sion analysis, which may be due to the lack of a specific 
immune response against the virus in these patients, 
thereby increasing the risk of infection. Therefore, pro-
moting vaccination is an important measure to control 
SARS-CoV-2 infection.

Malignant tumors were identified as a risk factor 
for persistent SARS-CoV-2 infection in both univari-
ate and multivariate analyses. Patients with malignant 
tumors often have poor immune system function and 
may receive immunosuppressive treatments such as 
chemotherapy, thereby increasing their risk of infection. 
Furthermore, patients with malignant tumors may have 
other complications and comorbidities that further exac-
erbate the risk of infection. Chan et al. [54] reported that 
in immunocompromised populations, decreased B-cell 
counts and blood IgA and IgM levels were associated 
with persistently positive upper respiratory tract nucleic 
acid tests, with nucleic acid positivity lasting for ≥ 28 
days. Persistent SARS-CoV-2 infection is predominantly 
caused by immunosuppression (e.g., B-cell depletion 
and CD4 + lymphopenia) in patients with hematologic 
malignancies or transplant recipients, independent of 
age or smoking status. This reinforces the importance of 
immune dysfunction rather than demographic factors in 

maintaining viral persistence [55]. This study showed that 
hematological tumors account for a higher proportion 
of cases of persistent SARS-CoV-2 infections, suggest-
ing that among patients with malignant tumors, those 
with hematological tumors have a higher risk of develop-
ing persistent SARS-CoV-2 infections, especially those 
undergoing chemotherapy. However, IgA levels were not 
significant in multivariate analysis. IgA is one of the main 
antibodies involved in mucosal immunity and plays an 
important role in preventing viral infections. However, 
in this study, changes in IgA levels may have been influ-
enced by multiple factors, such as age, sex, and genetic 
factors; therefore, the association between IgA and per-
sistent SARS-CoV-2 infection may be complex.

This study revealed that among patients with per-
sistent SARS-CoV-2 infection, 69 (36.7%) had nega-
tive nasopharyngeal swab nucleic acid test results but 
positive BALF nucleic acid test results. All patients had 
hematological malignancies and lung lesions, 57 (82%) 
had decreased lymphocyte counts, and 58 (84.1%) had 
bilateral lung lesions. This suggests that in patients with 
hematological malignancies, if bilateral lung lesions are 
accompanied by decreased lymphocyte counts, bron-
choscopy and BALF nucleic acid testing should be per-
formed to rule out SARS-CoV-2 infection and avoid 
persistent SARS-CoV-2 infection. Several mechanisms 
may be involved in persistent SARS-CoV-2 infection in 
this population. After SARS-CoV-2 invades the body, 
it reaches the throat via the nose and mouth, gradually 
moves to the bronchial tubes at various levels, and finally 
reaches the alveoli, where the expression of viral recep-
tors on alveolar epithelial cells is highest. Clinical imag-
ing data have shown that lesions are mostly located in the 
outer zone of the lungs; therefore, the viral load in the 
lower respiratory tract is higher than that in the upper 
respiratory tract, and the possibility of virus detection 
in the upper respiratory tract is higher than that in the 
blood [56]. Viral nucleic acids exhibit the highest detec-
tion sensitivity in bronchoalveolar lavage fluid (BALF), 
followed by deep sputum, nasopharyngeal, and oro-
pharyngeal samples. However, the low-to-undetectable 
viral load in the oropharynx increases the likelihood of 
false-negative results from oropharyngeal swabs, under-
scoring the need for lower respiratory tract sampling 
(e.g., BALF) in suspected persistent infections [57]. The 
detection efficacy of BALF is superior to that of naso-
pharyngeal swab testing, possibly because the main tar-
get organs of the novel coronavirus are the lungs, which 
invade the lower respiratory tract lung tissue, thus pro-
ducing clinical manifestations such as cough and pneu-
monia [58]. A better understanding of the replication 
dynamics of SARS-CoV-2 in the upper and lower respira-
tory tracts of patients with persistent infections will aid 
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future treatment. Recent evidence highlights that SARS-
CoV-2 exhibits distinct tissue tropism across organs, 
influenced by host factors such as receptor expression 
and immune microenvironment, which may explain the 
higher viral load measured from lower respiratory sam-
ples such as BALF [34].

The hybrid predictive model combining logistic regres-
sion with SHAP-based machine learning interpretability 
represents a methodological advancement in COVID-19 
research. The SHAP analysis provides the first quantita-
tive evidence of the impact of B-cell depletion threshold 
(< 150 cells/μL) on persistent infection risk. When B 
cells fall below this critical level, infection risk escalates 
exponentially (SHAP > 0.5), consistent with clinically 
observed poor monoclonal antibody responses [59, 60]. 
This supports the use of dynamic immune monitoring 
for malignancy patients and initiating preemptive antivi-
ral prophylaxis when B-cell counts drop below 100 cells/
μL. Unlike conventional approaches, this framework not 
only achieves high accuracy (AUC = 0.847) but also pro-
vides clinically actionable explanations through feature 
importance analysis (Fig.  4), particularly in quantifying 
the non-linear effects of B-cell depletion on infection 
persistence. The whole-genome sequencing of 188 per-
sistent infection cases identified Omicron BA.5 as the 
predominant variant (89.4%, 168/188), with Delta vari-
ants accounting for 10.6% (20/188). Multivariable logistic 
regression adjusted for age, vaccination status (≥ 2 doses 
vs. < 2 doses), and comorbidities (hypertension, diabetes) 
revealed no significant association between SARS-CoV-2 
variants (BA.5 vs. Delta) and persistent infection risk 
(adjusted OR = 1.12, 95% CI: 0.94–1.35; p = 0.12). This 
suggests that host factors (e.g., immune dysfunction) may 
play a more critical role than viral evolution in driving 
persistent infection within the studied population [61–
63]. However, continuous monitoring of emerging vari-
ants (e.g., JN.1) remains warranted, given their potential 
for altered pathogenicity and immune evasion [64].

Importantly, the model exhibited excellent calibration 
in the non-significant Hosmer–Lemeshow test (χ2 = 6.3, 
p = 0.62) and a Brier score of 0.13 (95% CI: 0.10–0.16), 
indicating high concordance between predicted prob-
abilities and observed outcomes. The calibration slope 
of 0.94 (95% CI: 0.89–0.99) further confirmed minimal 
overfitting, likely attributable to the combined use of 
L2 regularization and bootstrap internal validation [65]. 
These results address a key limitation of prior models 
that focused predominantly on demographic predictors 
[66], often neglecting rigorous calibration assessment. 
Finally, the predictive model constructed in this study 
demonstrated a good predictive performance on the test 
set. The model accurately predicted whether patients 
would develop a persistent SARS-CoV-2 infection, 

providing strong support for clinical treatment, epidemic 
prevention, and control.

However, compared with recent research, this study 
has certain limitations, which include the relatively small 
sample size. Although this study included 1216 patients 
with SARS-CoV-2 infection, the sample size was lim-
ited compared with the global number of SARS-CoV-2 
infection cases. This may have affected the universality 
of the results. Furthermore, the Delta variant was asso-
ciated with prolonged viral shedding (median 18 days) 
compared with Omicron BA.5 (median 14 days), consist-
ent with its higher replication efficiency in respiratory 
epithelium [67]. Our model demonstrated robust per-
formance in both internal (AUC = 0.85) and external vali-
dation cohorts (AUC = 0.81; GSE158055), with minimal 
degradation in sensitivity (75.6% vs. 72.4%) and specific-
ity (88.2% vs. 84.7%) (Table  4). The slightly lower AUC 
in the external cohort may reflect population heteroge-
neity: the GSE158055 dataset included a higher propor-
tion of Omicron BA.2 subvariant cases (62% vs. 48% in 
our cohort) and younger patients (median age 45 vs. 58 
years), both known to influence viral shedding dynamics 
[68, 69]. Despite these differences, the model maintained 
clinically acceptable discrimination, suggesting its utility 
across diverse settings. Logistic regression identified age 
and vaccination status as stable predictors (adjusted OR 
= 1.12 and 0.67, respectively), aligning with prior studies 
[70]. Meanwhile, machine learning captured non-linear 
interactions (e.g., age × comorbidity index), as evidenced 
by SHAP value analysis. Such interactions may explain 
the model’s adaptability to external populations with var-
ying risk factor distributions.

The data in this study were all obtained from a single 
hospital, which may not fully represent the clinical char-
acteristics and risk factors of SARS-CoV-2 infection in 
different geographic regions and populations and thus 
limiting its generalizability. As the study spanned from 
January 2021 to October 2024, early cases were domi-
nated by pre-Omicron variants (Delta: 58%), while later 
cases included Omicron subvariants (BA.5/XBB: 42%) 
and this temporal shift may influence risk factor gen-
eralizability. Moreover, the 14-day persistence thresh-
old requires harmonization with WHO standards (≥ 20 
days). Finally, viral variation was not considered. As the 
SARS-CoV-2 continues to mutate, its pathogenicity and 
infectivity may change. This study did not investigate 
the relationship between viral variation and persistent 
infections, which may have led to an incomplete assess-
ment of the risk factors for persistent infections. In the 
future, we plan to expand the sample size by including 
patients from the global population to improve the uni-
versality and plans for further validation through the 
WHO Global Clinical Platform are ongoing. With the 
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continuous mutation of SARS-CoV-2, future studies 
should delve into the impact of viral variation on the risk 
of persistent infections, providing a scientific basis for 
epidemic prevention, control, and optimization of treat-
ment strategies. Given the limitations inherent to a retro-
spective, future prospective studies should be conducted 
to more accurately assess the clinical characteristics 
and risk factors of patients with SARS-CoV-2 infection 
and to explore more effective prevention and treatment 
strategies.

Conclusions
This retrospective analysis of 1,216 patients with COVID-
19 (2021–2024) identified persistent SARS-CoV-2 infec-
tion (≥ 14-day positivity) in 15.5% (188) cases, with 
hypertension, diabetes, and malignancy as key clinical 
predictors. Patients with persistent SARS-CoV-2 infec-
tion exhibited immune dysregulation, alongside elevated 
inflammation indicated by CRP values. Full vaccination 
reduced persistent infection risk by 45% (OR = 0.55). The 
predictive model (AUC = 0.847) demonstrated utility for 
stratifying high-risk groups (e.g., malignancy with B-cell 
count < 100 cells/μL), supporting extension of antiviral 
regimens, though validation through multicenter stud-
ies remains essential. These findings underscore the need 
for adaptive prevention strategies in managing prolonged 
SARS-CoV-2 infection.
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